Knowledge Graph-Driven Conversational Agents

Joseph Bockhorst, Devin Conathan, Glenn Fung
Machine Learning Research and Innovation
American Family Insurance
Madison, WI
{jbockhor,dconatha,gfung}@amfam. com

Abstract

We present an approach to developing task-oriented conversational interfaces that
addresses two key challenges that designers face: i) constructing a system grammar
that strikes the right balance between the expressiveness necessary to carry out
the task and the ability to correctly infer parses from natural language and ii)
dealing with parse ambiguities. We address the latter of these with an approach
to semantic parsing where the system constructs a semantic parse progressively,
throughout the course of a multi-turn conversation in which the system’s prompts
to the user derive from parse uncertainty. We construct the system grammar by
leveraging the structured types and entities of an underlying knowledge graph (KG)
complemented by a machine learning (ML) driven restructuring procedure. The
rationale for inducing the grammar from KG types stems from our perspective that
the aim of a conversation in our system is to identify a single instance of an a priori
unknown type in the KG. ML models provide suggestions for adding additional
structure to the KG (and thus a re-structuring of the grammar). We provide results
of an empirical study into the value of our human-in-the-loop knowledge graph
restructuring algorithm showing that meaningful structure can be recovered by
applying machine learning to existing data from two case studies in the insurance
domain.

1 Introduction

Modern conversational agents employ elements from both the symbolic and non-symbolic sides
of artificial intelligence. On the symbolic side consider that typically the aim of an agent is, given
natural language inputs from a human user, to infer a representation understood by the system and
faithful to the user’s intentions. Furthermore, the understandings available to the system correspond
to semantic parses in the system’s grammar. In contrast to these symbol heavy components, the most
effective means of producing these semantic parses are dominated by non-symbolic models produced
by machine learning techniques.

Here we address key challenges in conversational interfaces concerning constructing the system
grammar and dealing with parse ambiguity by formalizing the symbolic language and behavior of
agents and leveraging machine learning techniques to design and curate the underlying systems.

We define a knowledge graph-driven conversational agent (KGCA) as a type of interface whose
behavior is determined in part by a knowledge graph. See Figure [I] for an overview. The job of
the agent is to interact with the user to translate user inputs (over multiple turns if necessary) into
a semantic parse in the system’s grammar that is in agreement with the user’s intent (right side of
Figure[I)). Machine learning plays a crucial role in the translation step when user inputs are natural
language. Since the effectiveness of the agent depends critically on the knowledge graph, we propose
a human-in-the-loop method for curating the KG structure to best achieve the KGCA’s goals. A

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

yields %
accepted prompt
restructuring v

e |
SO |
ML
proposed models

restructuring ! ¥

N

Figure 1: KGCA overview. The left side diagram represents our human-in-the-loop restructuring approach. ML
trained models are used to propose restructurings of the knowledge graph to curators. Accepted restructurings
cause subsequent changes to the system grammar. The right side shows changes to the semantic parse for one
turn of the conversation. Inspection of the incomplete semantic parse tree 7; after ¢ turns is used to produce a
prompt to the user who responds with an utterance. The tree and utterance together with the grammar and ML
models extend the tree to produce 7;+1 (see the appendix for the pseudo-code that shows how to update 7).

machine learning algorithm iteratively proposes candidate alterations of the knowledge graph which
can be accepted or rejected by a curator (left side of Figure).

We detail case studies of applying our methods for two quite distinct tasks in the auto and property
insurance industry. The first is a customer facing conversational agent that allows customers to
initiate the claims process by submitting a “first notice of loss” (FNOL) that contains the information
necessary to route the claim, for example, to a claims adjuster with the training needed for that
particular claim. The second case study is an internal facing virtual assistant that retrieves responses
to frequently asked questions (FAQs) about business products and processes.

Our contributions are threefold: i) a method for inducing conversational agent grammars from the
type structure of a knowledge graph, ii) an approach for progressively building up a semantic parse
for complex concepts over the course of a multi-turn conversation, and iii) a novel, simple and
effective human-in-the-loop approach to knowledge graph restructuring that uses inspection of ML,
model-derived embeddings of training utterances to propose restructuring operations to the curator.

2 Related Work

Semantic parsing is the the task of mapping natural language to a domain-specific meaning represen-
tation, such as a logical form or a parse tree in a context-free grammar. We briefly compare the work
presented here with related efforts.

Typically investigations into semantic parsing focus on the “single-shot” setting in which a full
meaning is inferred from a single input or sentence [1} 9} |4, 3]. Related approaches construct
semantic parses in the context of a conversation [3, 18]. While these context-aware approaches use the
conversation history to help infer meaning, for example by helping resolve linguistic references like
pronouns, they are still single-shot. There has been much less focus on interactive settings like ours
that construct meaning representations over multiple conversational turns, but there has been some
recent work [10]

3 Knowledge Graphs and Conversational Agents

3.1 Entities, Properties and Types

A knowledge graph is a way of storing information that is particularly useful for conversational
agents. Let £ be a set of entities and P be a set of properties. A knowledge graph £ C &£ x
P x & represents a set of facts; if (e1,p,e2) € K, then entity e; has property p equal to ez (e.g.
(Barack Obama, born in, Homnolulu)).

Boolean

a
Collison |—(_injuries)
J

Contact |
~(_ phone

Type (property) subtype has type
= —_—

Figure 2: A simplification of a fragment of the knowledge graph for the FNOL case.

£ contains both entity instances and entity types. An entity’s type is expressed in the graph with
a special property type: (10, type, Number), which says there’s an entity 10 that’s an instance
of the type Number. We can also have a special property subtype for capturing type hierarchies:
(Number, subtype, Integer).

& usually contains basic types like String, Number and Boolean and custom types specific to a
domain (e.g. Vehicle). K includes schema information about these custom types; for instance,
(Vehicle, year, Integer) indicates that entities with type Vehicle have a property year that
is a Integer. We call the type hierarchy and associated schemas the knowledge graph structure.
The knowledge graph structure defines what kinds of entity instances exist in the graph and (through
type hierarchies and properties) the relationships that might exist between them.

We define a conversational episode as a process that involves identifying an instance of a given type.
An KGCA is associated with an abstract type (an abstract type cannot have any instances) called the
root type for the agent. The KGCA aims to identify an instance of a concrete subtype of its root.
Presently we support two kinds of episodes: a retrieval episode aims to identify an instance that
exists in the KG while a construction episode creates a new instance by specifying values for all
properties according to its schema.

3.2 Constructing the Episode Grammar

We now describe how we use the KG to construct the KGCA’s meaning representation in the form of
a context-free grammar we call the episode grammar (EG). Starting from the root type we form the
EG so that its sentences correspond to a single instance of a concrete subtype of the root.

We refer to Figure [2]to us help illustrate our approach. For simplicity of exposition we assume that all
non-final types 7" (that is, a type that has subtypes) are abstract. In other words, a type T is concrete
if and only if it is a final type. Relaxations to the more general case require more bookkeeping but
otherwise add little additional complexity.

The nonterminals of the EG are composed of types and properties from the EG. Each type in the type
hierarchy under the root contributes a nonterminal to the EG. Given non-final type T' we create a
production rule for each subtype of 7T'. For example for the types FNOL and Collision we have

FNOL — ERS | Collision
Collision — AnimalCollision | VehicleCollision

The mapping for final type T with properties p;...p, is a single production rule
T — T.py ... T.py,. The final type VehicleCollision, for example, yields
VehicleCollision — VehicleCollision.injuries VehicleCollision.contact

Note that a type’s properties include the properties of its supertypes. Each property 7'.p; has a single
production T'.p; — TYPE(T.p;) mapping to its type TYPE(T.p;). If TYPE(Tp;) is not in the EG it is

also added using the method for adding types we just described. Continuing our example, expanding
out the properties of VehicleCollision yields

VehicleCollision — VehicleCollision.injuries VehicleCollision.contact
VehicleCollision.injuries — Boolean
VehicleCollision.contact — Contact
Contact — Contact.name Contact.phone
Contact.name — String

For more details on the KGCA and the role of the episode grammar we refer you to the appendix.

3.3 Case study: FNOL

Here we describe a KGCA designed to assist customers at the beginning of the claims process.
The motivating business need is an easy-to-use, automated process for customers to initiate a claim
that captures information need to internally route new claims (such as to the appropriate class of
claims adjuster) as well as collect certain key pieces of information (such as contact information for
third parties). Using existing enterprise artifacts relating to the "loss cause" taxonomy a KG was
constructed containing 21 subtypes of FNOL, the root type for this application, and 50 total types
(which includes the types of properties as well). Figure [2 shows a fragment of the KG for this case.
Important types and properties were associated with entity recognizes as well as canonical names and
other annotations to assist user interface design.

The business requested that the application begin with an open ended prompt such as "Please describe
what happened" for customers to enter an unstructured text description of their incident. Following
that the aim is to efficiently gather the remaining needed information. Given the level of detail it is
unlikely that all required information is contained in the initial text (e.g. sometimes we need to know
if the airbags were deployed); this motivates our multi-turn approach to semantic parsing.

These requirements called for mixed conversation strategy that uses a combination of variable and
fixed increment (see Section[A.3]in the appendix). At the start of an episode a variable strategy is
used for the initial prompt and then a fixed strategy takes over. With this hybrid approach, after a user
to enters an initial phrase such as “I got rear ended” the system is able to infer that a node for the
final type VehicleCollision must be in the parse tree, filling in other components of the tree that
can be inferred, and enabling more precise follow up questions.

A key advantage of this general approach of driving a conversation agent from a knowledge graph
is that it does not require business users or IT professionals to author explicit workflows since the
workflow is dynamically generated from the graph.

4 Knowledge graph restructuring

A KGCA can fail in a number of ways, but one of the main causes is that the system is unable to
map the user’s inputs to the appropriate parse due to limitations of natural language understanding.
Here we introduce the idea of restructuring the knowledge graph (i.e. changing the type hierachy and
schemas) in order to improve the performance of a KGCA. With more structure the task becomes
simpler because it can be achieved by successively narrowing down the set of possible instances (with
fixed or or variable increment strategies) by parsing more information about the user’s desired type
and properties.

We propose leveraging machine learning techniques to impose, discover or suggest optimal structures.
This primarily applies to retrieval episodes where you have a given set of instances. We leave
extending knowledge graph restructuring to construction retrieval for future work.

4.1 Changing the type hierarchy
We formalize a change to the type hierarchy as one of three operations:

e A merge of two types, which creates a common supertype

e A reassign of a type, which assigns it a new supertype

Any — Any

el N

String Float Integer String Number

Float Integer

Figure 3: An example merge operation.

Vehicle Vehicle
Jet Ski Yacht Car Motorcycle Watercraft Auto

SN N

Jet Ski Yacht Car Motorcycle

Figure 4: Examples of flat and structured vehicle hierarchies.

o A split of a type into one or more subtypes (this subsequently partitions the original type’s
subtypes and instances)

Examples: One merge operation might assign the types Float and Integer a common supertype
Number (see Figure[3). A reassign might designate that the type URL is actually a subtype of String.
Finally, a split might partition the type Vehicle into Car and Motorcycle, and each vehicle would
now be an instance of exactly one of Car or Motorcycle (assuming cars and motorcycles are the
only instances of vehicles in our graph).

As part of a merge operation, you can add properties to the types in order to distinguish them. In
the Vehicle case, one could create the number_of_wheels property for all Auto instances. All
Car instances have 4 wheels and all Motorcycle instances have 2 wheels. We now have a property
we can inquire about in order to narrow down the set of possible Vehicle instances for a retrieval
episode: “How many wheels does the vehicle have?”. This process of refinement by describing
properties is usually only necessary when many candidate instances remain; often one can simply
enumerate the possibilities: “’Is it a car or motorcycle?”.

For this paper we will assume we are starting with a flat hierarchy of types and wish to build a more
complex structure, so we will be focusing on the merge and reassign operations. We leave exploring
approaches to using machine learning for optimal split operations for future work.

4.2 Structure and KGCA performance

The structure of the KG directly impacts the performance of the KGCA. As a concrete example,
assume we are trying to determine an instance of vehicle from the utterance “I got hit on my way
to work today”, and consider the consequences of using the two vehicle type hierarchies specified
in Figure 4 An NLP recognizer will struggle to determine if this user is referring to a Car or
Motorcycle because the utterance is ambiguous; however, it is unlikely that the user is referring to a
Watercraft. Accordingly, the KGCA can parse the utterance as an Auto type and ask a followup
refining question to produce an instance or further refine the type.

4.3 Human-in-the-loop restructuring

Developing the KG structure can be a daunting task. It is sometimes extremely difficult to start the
restructuring process; with a flat hierarchy of n types, there are 2 x n x (n — 1) possible merges
and reassigns to consider (as of writing, our virtual assistant detailed in Section[5]has 313 possible
responses and 97656 possible merges!).

We propose using machine learning to suggest possible operations in order to prioritize likely
candidates. This approach assumes you have labeled utterances U. C U (where U is the set of

all utterances) for the each final type (or class) ¢ € C of the tree and can train a classifier. After
training the classifier, we produce an encoder function f : U — R%. Any classifier that can be used
to represent utterances as d-dimensional vectors (for some d) can be used here.

Next we use the encoder to produce representations for each class. If U, is the set of all utterances
associated with class ¢, then
1
He = 777 Z f(w)
Uel

MEUC

is the class centroid, or mean vector representation of that class. We then suggest the two classes
with the closest centroids as candidates to merge or reassign:

ci,c5 = argmin D(pte, , fic,)
c1,c22€C
c1#ca
where D is some distance function (we use Euclidean distance). The user determines if these
two classes should be merged or if one should assigned as the subtype of the other. If they are,
the appropriate changes to the type hierarchy are made and utterances are reassigned to their new
classes. If applicable, the user can create new properties and refinement prompts to help distinguish
between different subtypes of a type. In a real application (see Section[3)), it is often impractical and
unnecessary to retrain the classifier for each iteration.

Algorithm 1 Human-in-the-loop restructuring pseudocode

L={} > initialize labeled pairs
repeat

f < TRAINENCODER()

forallc € C' do

e 11 Ser, F(1)

end for
€1, C5 < argmine, c2,eC d(pe, ﬂcz)
c1#c2
(c1,c2)¢L)]
ORACLE(c], ¢3) > ask curator if these should be merged or reassigned
L Lu{(ct,c3)}
C, U + UPDATE(C,U, L) . > update classes and training utterances to reflect changes

until Users stops

5 Case study: Frequently Asked Questions

5.1 Background

At our company, we have a virtual assistant chatbot whose purpose is to answer common questions
about products and processes. Questions can range from broad to specific and can include domain-
specific jargon. Some typical questions are:

e “How do I list the youthful driver as a non-driver?”
e “Do condos have to meet the minimum deductible?”

e “How do I change the term on this policy?”

As of writing, the virtual assistant has 313 possible responses which range from single sentences to
many paragraphs or links to external documentation. We cast this chatbot as a KGCA by creating 313
instances of the FAQ type, which is a retrieval conversational episode; that is, the goal of the chatbot
is to map the user’s query utterance to the appropriate FAQ instance.

We have 8315 total training utterances. We use a CNN with max pooling and pretrained Glove
embeddings trained on the Common Crawl 840B dataset [6] [7]. By applying our CNN classifier
as a straightforward 1-of-k document classification task, we are able to achieve 78% accuracy on a
holdout test set (10:1 train/test split). This performance is not satisfactory for the needs of our users,

so we seek to increase accuracy by creating FAQ subtypes and organizing the instances as subtypes
and introduce properties which can be used to refine and disambiguate between instances.

Fortunately, there is a lot of inherent structure to the FAQ instances. Most can be grouped under
general categories like “claims” or “discounts”. Some responses are identical except they differ in
one small aspect. For example, users can ask questions about two lines of product; the response to the
question “Is there a special limit for cameras?”” depends on the product line, but users rarely specify
which line they are asking about in their utterances.

Our goal is to bring structure to the questions by placing them in categories which correspond to
supertypes in Section [3.2] This way, if a complete parse is not possible due to ambiguity of the
utterance (e.g. they did not specify the product line), the KGCA can achieve a partial parse by
determining the response the user is seeking is in the camera category. The KGCA can then complete
the parse by asking the user to fill in the product_line property.

5.2 Procedure

Without any special tools or algorithms, subject matter experts have grouped the 313 responses
into 161 categories. We consider the mapping of the 313 responses to the 161 categories our “gold
structure” for the sake of this case study, and we examine how much of this structure can be recovered
using our approach detailed in Section[4.3] We use the gold structure as an oracle to simulate the user
in the human-in-the-loop process. We use a slightly modified version of the process described in[4.3]
Roughly the process is:

1. Train the encoder

2. Suggest the closest class pair (if pair is not a previously seen true or false positive)
3. If k responses have been received since last time encoder was trained, go to step 1.
4

. If user accepts:
Pair labeled a true positive
Merge or reassign
Go to step 2.

5. If user rejects:
Pair labeled a false positive
Go to step 2.

Note that the gold structure only contains a 2-level hierarchy (root — category — response). This
simplifies the procedure and simulations because we can infer whether an operation should be a
merge (if the two candidates are responses) or a reassign (if one of the candidates is a category).

5.3 Analysis

It takes 152 operations to get from a flat hierarchy to the gold structure, so this is the maximum
number of true positives possible. We report the number of true positives and false positives for each
iteration with k = 10. For the first few iterations the procedure achieves perfect precision and all 10
suggested pairs were merged into new classes. Unsurprisingly, as the number of iterations increases
the task becomes more difficult as there are fewer positives to find. We find that with a reasonable
amount of time from the user (250 responses), 70% of the original structure can be recovered. The
results of the experiment are summarized in Figure 5]

Interestingly, we found that a majority of the false positives were actually reasonable suggestions
overlooked by our subject matter experts. For example, there is a whole category of responses called
“small talk” for when users inquire about the age of the chatbot or where it lives; these were not placed
into the same category but were often suggested by our algorithm. We also discovered many other
reasonable suggestions not included in our gold structure, such as two responses about “passenger
vans”. Additionally, though our gold structure only includes a 2-level hierarchy, in reality there is
much more inherent structure (subcategories, etc.) that the model was likely suggesting.

5
1254
100 4
=
5 754
5(} -
— true positives
254 /S H
false positives
------------ old
04 e g
0 5 10 5 20 25

iteration

Figure 5: Results from virtual assistant case study. With 250 responses from the user we are able to recover 70%
of the gold structure.

FAQ

W

loyalty disc_removed rental_car multi_product affinity uhaul rent_home sub_vehicle
FAQ

/\

discounts rental

T Y N

loyalty disc_removed multi_product affinity rental car uhaul rent_home sub_vehicle

Figure 6: Example structure recovered by our procedure

6 Conclusion and Future Work

We have proposed a system for designing and driving conversational agents using a knowledge
graph. Our aim is to better understand these systems and better enable them to scale out and succeed
by formalizing the underlying processes. We also propose to use machine learning and human-
in-the-loop procedures to design and curate the underlying knowledge graph to maximize their
effectiveness. We specified one such approach and presented two case studies applying our systems
to real applications in the insurance industry.

This area is very active for us and we are pursuing many directions of research and development. As
mentioned so far in the paper, we would like to expand the knowledge graph restructuring process to
include splits and other more complicated operations, as well as investigate the impact of restructuring
on construction episodes. Furthermore, while our process proposes merges, it is still incumbent on
the curator to determine properties or disambiguation strategies for the different subtypes under a new
type; we would like to leverage machine learning techniques to suggest and create these properties to
relieve more burden from the curators. We would also like to support multiple inheritance to allow
more flexibility with the types we can express in our system.

Another common problem and area we’d like to explore is the issue of introducing new types or
instances to a KGCA. Often it is the case that new types have little training data when compared to
the types being used in production; it is essentially a few-short learning problem. We would like to
see how the knowledge graph structure can improve performance for this case.

One benefit we get for using this system in production is the feedback we are able to obtain; we
can analyze data to find patterns and use the frequency of certain types or instances as priors. For
example, if a customer said they hit a deer, with enough data we hypothesize we would be able to
determine that it is likely that their front bumper is damaged.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase
from question-answer pairs. In EMNLP, pages 1533—-1544. ACL, 2013.

Joseph Bockhorst, Devin Conathan, and Glenn M. Fung. Probabilistic-logic bots for efficient
evaluation of business rules using conversational interfaces. In Proceedings of the Thirty-third
Conference on Innovative Applications of Artificial Intelligence, Jan 27-Feb 1 2019, Honolulu,
Hawaii, 2019.

Arash Einolghozati, Panupong Pasupat, Sonal Gupta, Rushin Shah, Mrinal Mohit, Mike
Lewis, and Luke Zettlemoyer. Improving semantic parsing for task oriented dialog. CoRR,
abs/1902.06000, 2019.

Sonal Gupta, Rushin Shah, Mrinal Mohit, Anuj Kumar, and Mike Lewis. Semantic parsing for
task oriented dialog using hierarchical representations. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, 2018.

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. Search-based neural structured learning for
sequential question answering. In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1:
Long Papers, pages 1821-1831, 2017.

Yoon Kim. Convolutional neural networks for sentence classification. CoRR, abs/1408.5882,
2014.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for
word representation. In Empirical Methods in Natural Language Processing (EMNLP), pages
1532-1543, 2014.

Yibo Sun, Duyu Tang, Nan Duan, Jingjing Xu, Xiaocheng Feng, and Bing Qin. Knowledge-
aware conversational semantic parsing over web tables. In Proceedings of the Thirty-Third
AAAI Conference on Artificial Intelligence, 2019.

Yushi Wang, Jonathan Berant, and Percy Liang. Building a semantic parser overnight. In Pro-
ceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pages 1332-1342, Beijing, China, July 2015. Association for Computational Linguistics.

Ziyu Yao, Xiujun Li, Jianfeng Gao, Brian M. Sadler, and Huan Sun. Interactive semantic
parsing for if-then recipes via hierarchical reinforcement learning. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications
of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February
1, 2019., pages 2547-2554, 2019.

Appendix A KGCA

In this section we describe how to use the episode grammar to drive a conversational agent.

A.1 Prompts and utterances

We call message from the system to the user prompts and messages from the user to the system
utterances. Our formulation does not impose constraints on the nature of either prompts or utterances.
We expect there to be wide variety of forms that are dictated by the applications. Prompts range from
plain text, rich text, discrete selectors such as sliders, buttons, check-boxes, constrained values (e.g., a
number between 1 and 10), images, audio or video. Utterance formats are the complementary forms:
text, selections and values.

A.2 Algorithm

Algorithm 2 High level pseudocode of a conversational episode

function KGCA(T, 6)
T A partial parse tree
0: the system’s short-term memory
if ISCOMPLETE(T) then return 7
end if
u < TURN(T)
6 < UPDATE(6, MATCH(u, T))
T <+ ExXpPaND(T,)
return KGCA(T, 0)
end function

At the beginning of an episode the partial parse tree 7 consists of single node containing the
nonterminal for the root type and the system’s short-term memory 6 is empty. As the episode
progresses 7 grows on each turn. Episode termination is checked in ISCOMPLETE(). The termination
condition for construction episodes is when we have a complete parse tree with no nonterminal leaves.
For retrieval episodes the episode ends when 7 is consistent with only a single one of the parse trees
of the candidate instances.

As shown in Algorithm 2] there are several key functions invoked in each step of the conversation.
TURN represents one turn of the conversation in which the system and the user exchange messages.
In the simplest case the system sends the user a single prompt to which the user responds with an
utterance. TURN takes in 7 so that that the system can tailor the prompt according the information
it needs to complete the parse. MATCH processes the user utterance in the context of the current
parse and returns a encoding that is incorporated into the memory in UPDATE. The exact processing
of MATCH is context dependent. For example, when the prompt offers the user a Yes / No choice
MATCH is very simple while a prompt for unstructured text such as “Please describe what happened”
in the FNOL application MATCH involves applying a suite of entity recognizers and/or document
classification models to the utterance. Lastly, EXPAND takes the updated memory and returns
an expanded tree. EXPAND depends on the prompt (from TURN) and both are related to the
conversational strategy.

A.3 Conversation Strategy

The main loop of KGCAs shown in Algorithm [2] gives a high-level overview. The details lie within
the functions. The implementations of the key functions are closely related to the conversational
strategy at play at the time. We describe two general conversational strategies here, but we note that
1) there are many other variations of strategies possible and ii) the system may switch between the
strategies during that course of an episode.

A.3.1 Fixed Increment

A fixed increment strategy is one that grows 7' by expanding one leaf nonterminal N per turn.
Methods for choosing the nonterminal include information gain [2]] and a predefined priority. After

10

N Interaction T prompt Utterance T
E a) A number E Please I want to E
b) An operation T describe subtract T
Enter choice > b Int.left Op.o Int.right your from five Intleft Op.o Int.right
expression: | | |
Op.o a) Addition E 5 “n
b) Subtraction T
Int.left Op.o Intright E
Enter Choice > b | How much 3
would you T
“«n like to Int.left Op.o Int.right
subtract I ‘ ‘
Int.left What is the E from 5? 5 “n 3
value of the T
left operand? Int.left Op.o Intright
5 | | |
5 ll_ll
Int.right How much would E
you like to /|\‘
subtract from 5? Int.left Op.o Intright
3 | | |
5 ll_” 3

Figure 7: Example progressions of conversations using fixed-increment (left) and variable-increment (right)
strategies. At the beginning of the episode the tree 7T is just the root node F (not shown). Each row shows a
single turn where the tree 7 shown is the resulting one after Expand. For fixed-increment, IV (first column) is
the nonterminal selected to expand.

the system chooses [V it sends a prompt to the user designed to solicit a response utterance indicating
one of N’s productions. Match interprets the utterance in this context mapping it to the selected
production, which is subsequently stored in the memory 6 (under pure single-step 6 is otherwise
empty). Finally, Expand extends 7 by appending the selected production.

A.4 Variable Increment

Under a variable increment strategy 7 grows by a arbitrary amount per-turn. Unlike a fixed strategy
in which the prompt is narrowly focused on a single nonterminal, in this case the prompt is designed
to solicit an utterance that more broadly indicates how to extend the tree. For instance, a prompt near
the beginning of the FNOL agent instructs the user: “Please describe what happened”. Our
matching approach under variable increment scans the utterance against a collection of recognizers,
each associated with a specific nonterminal in the EG. In general we use two classes of recognizers:
static rules based on regular expressions and statistical models learned with machine learning
approaches akin to methods for named entity recognition.

Appendix B Example: Arithmetic Expression

Figure[7]shows the evolution of 7 through episodes involving a fixed increment and variable increment
strategy respectively on a toy example related to an integer expression. In this example we assume the
KG contains a type hierarchy for expressions with root type E that gives rise to an episode grammar

E — Int
E — Int.left Op.o Int.right
Op‘ O 4) Vl+|| I ||_ll

and productions for Int, Int.left and Int.right to integer literals. This grammar represents
integer expressions that consist of either an integer literal or the addition or subtraction of two integer
literals.

From these example we see instances of the following general concepts

e Fixed increment is simple but takes more turns
e Variable increment is more complex but may take fewer turns

o The prompt depends on all of 7 not just the selected nonterminal enabling more informative
prompts such as in step 4 of fixed increment.

11

e Variable increment permits production inference. For example the first step infers the
production E — Int.left Op.o because that production is necessary to produce "-" which
was matched in the utterance.

e Nonterminal are allowed custom recognizers and are not restricted to be just a composition
of recognizers for its ’parts’.

e The episode grammar does not presume any sequential constraints among the manifestations
of nonterminal entities within user utterances. For example, in the first step of the variable
increment case after the user says "I want to subtract from five" the system is free to link the
value "5" with the left operand even though the operator "subtract" appears prior to "five" in
the user utterance.

12

	Introduction
	Related Work
	Knowledge Graphs and Conversational Agents
	Entities, Properties and Types
	Constructing the Episode Grammar
	Case study: FNOL

	Knowledge graph restructuring
	Changing the type hierarchy
	Structure and KGCA performance
	Human-in-the-loop restructuring

	Case study: Frequently Asked Questions
	Background
	Procedure
	Analysis

	Conclusion and Future Work
	KGCA
	Prompts and utterances
	Algorithm
	Conversation Strategy
	Fixed Increment

	Variable Increment

	Example: Arithmetic Expression

