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Exploiting Restricted Boltzmann Machines and
Deep Belief Networks in Compressed Sensing

Luisa F. Polanı́a, Member, IEEE, and Kenneth E. Barner, Fellow, IEEE

Abstract—This paper proposes a CS scheme that exploits the
representational power of restricted Boltzmann machines and
deep learning architectures to model the prior distribution of
the sparsity pattern of signals belonging to the same class. The
determined probability distribution is then used in a maximum
a posteriori (MAP) approach for the reconstruction. The pa-
rameters of the prior distribution are learned from training
data. The motivation behind this approach is to model the
higher–order statistical dependencies between the coefficients
of the sparse representation, with the final goal of improving
the reconstruction. The performance of the proposed method is
validated on the Berkeley Segmentation Dataset and the MNIST
Database of handwritten digits.

Index Terms—Compressed sensing (CS), restricted Boltzmann
machine (RBM), deep learning, deep belief network (DBN),
wavelets, dictionary learning.

I. INTRODUCTION

COMPRESSED sensing has become an extensive research
area due to its potential to perfectly reconstruct sparse

signals from a small set of nonadaptive linear measurements
in the form of random projections [1], [2]. In essence, CS
states that data acquisition with far fewer measurements than
that dictated by the Shannon-Nyquist theorem is possible,
under certain conditions. In last decade, the area of CS has
extended to new applications that require structured signal
models that go beyond the simplistic sparsity model [3]–[7].
Examples of deterministic models include the wavelet tree
model, which assumes that the non-zero signal coefficients lie
in a rooted and connected tree structure, and the block-sparsity
model, which assumes that the non-zero signal coefficients
form clusters [3], [4]. Instead of imposing an explicit structure
of the coefficients, statistical approaches usually impose a prior
belief about the signal of interest in terms of a sparseness
prior [5], [6].

Even though the bulk of CS theory has been developed for
signals that have a sparse representation in an orthonormal
basis, efforts have been made to extend CS theory to signals
that are sparse with respect to an overcomplete dictionary [8]–
[10]. This extension adds more flexibility to CS as many
signals of interest are not sparse in an orthonormal basis, but
are in an overcomplete dictionary. For example, reflected radar
and sonar signals have a sparse representation in Gabor frames.
The coherence between the columns of an overcomplete dic-
tionary poses some limitations in extending the CS theory to
sparse overcomplete representations [1], [8]. However, Raught
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et al. [8] showed that CS is viable in the context of signals
that are sparse in an overcomplete dictionary. They studied the
conditions on the overcomplete dictionary that, in combination
with a random sampling matrix, results in small restricted
isometry constants.

In this paper, a statistical approach is proposed that uses
restricted Boltzmann machines (RBMs) and deep belief net-
works (DBNs) to model the prior distribution of the sparsity
pattern of the signal to be recovered. The proposed method
requires a priori training data of the same class as the signal
of interest. Either orthonormal bases, such as the wavelet
transform, or overcomplete learned dictionaries can be em-
ployed as sparsifying transforms in the proposed approach.
In the case of overcomplete dictionaries, a training stage is
employed with dual purpose. First, it learns an overcomplete
dictionary to sparsely represent the signal of interest. Second,
it estimates the parameters of the prior distribution from the
sparse codes of the training data. Therefore, unlike most of
the works that use overcomplete learned dictionaries in CS
problems [11]–[13], which only use the training stage to
learn the dictionary and disregard the sparse codes associated
with such a dictionary, the proposed approach exploits both
dictionary and sparse codes from the training stage to improve
CS reconstruction algorithm performance.

In addition to the training stage, another contribution of the
proposed approach is related to the reconstruction algorithm.
After either RBMs or DBNs are employed to model the
prior distribution of the sparsity pattern of the signal to
be recovered, the determined prior is then employed in a
maximum a posteriori approach for reconstruction. Obtaining
the exact MAP estimator solution can become computational
unfeasible since complexity increases exponentially with the
signal length. To overcome this limitation, we propose a
greedy approach realized by modifying the orthogonal match-
ing pursuit–based algorithm proposed in [14] to maximize the
posterior distribution of the sparsity pattern.

The motivation for using RBMs and DBNs is twofold. First,
they possess tremendous representational power; second, infer-
ence and parameter learning can be efficiently achieved using
contrastive divergence and greedy layer–wise training [15]–
[17]. Indeed, Le Roux et al. [15] showed that an RBM can
model any discrete distribution. Moreover, adding hidden units
yields strictly enhanced modeling performance, unless the
RBM already perfectly models the data. Similarly, Sutskever
et al. [16] showed that deep belief networks can approximate
any distribution over binary vectors to an arbitrary level of
accuracy, even when the width of each layer is limited to
the dimensionality of the data. Deep belief networks is one
of the architectures of deep learning, a powerful and fast–
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growing field in artificial intelligence [17]. Therefore, this
manuscript links deep learning with CS by exploring the
capabilities of deep learning architectures in modeling the
statistical dependencies in the sparsity pattern of signals. To
the best of our knowledge, this is the first paper that uses deep
learning–based priors to model the sparsity pattern of signals
in a compressed sensing framework.

Previous works have employed fully visible Boltzmann
machines to model the signal support in the context of
compressed sensing [14], [18] and sparse coding [19], [20].
Restricted Boltzmann machines have been employed to model
the dependencies between low resolution and high resolution
patches in the image super–resolution problem [21]. The work
of Tramel et al. [22] also uses RBMs to model the sparsity
pattern of signals. Their work is based on the approximate
message passing (AMP) framework, which is very powerful
at reconstructing sparse signals by exploiting the statistical
properties of the problem. However, it has been shown that
AMP algorithms are very sensitive to parameter tuning [23].
Regardless of their simplicity and ease of implementation,
OMP-based algorithms outperform AMP algorithms in some
cases [24], [25], specially when the non-zero coefficients of
sparse signals differ in magnitude [25].

The closest related work to ours was proposed by Peleg
et al. [14]. They used fully visible Boltzmann machines to
model the distribution of the sparsity pattern of sparse signals.
We follow their method in trying to reconstruct the signal
support using a MAP approach. Our work differs from that of
Peleg et al. in several aspects. First, the aim of their work
is to learn sparse representations for signal modeling. The
aim of our work is different, namely to reconstruct sparse
signals from undersampled measurements. Second, they use
fully visible Boltzmann machines that can only model pair–
wise dependencies between elements in the sparsity pattern.
Instead, RBMs and DBNs can model higher–order depen-
dencies and, therefore, they offer superior representational
power. Third, we employ contrastive divergence for parameter
learning instead of the maximum pseudo–likelihood approach
in order to realize computational complexity and performance
improvements. In practice, pseudo–likelihood learning has a
high computational overhead compared to contrastive diver-
gence [26]. Pseudo–likelihood learning does not approximate
the maximum likelihood estimator well, except in the limit of
zero dependence [27]. It was shown that contrastive divergence
is equivalent to pseudo–likelihood for fully visible Boltzmann
machines if single–step Gibbs sampling is employed and
outperforms pseudo–likelihood when the number of sampling
steps is larger than one [28].

The organization of the paper is as follows. Section II
presents a brief review of CS and deep learning architectures.
In Section III, the proposed method is presented. Numerical
results for the proposed method and comparisons with CS
reconstruction algorithms are presented in Section IV. Finally,
Section V concludes the work with closing remarks.

II. BACKGROUND

A. Compressed sensing

Let x ∈ RN be a signal that is approximately K-sparse
in a dictionary D ∈ RN×Q. Thus, the signal x can be
approximated by a linear combination of a small number of
column vectors from D, i.e. x = Ds+r, where s is the sparse
vector of weighting coefficients, r is the representation error,
and K � N . The support of s is denoted as θ and is associated
with the sparsity pattern S, which is defined as Si = 1θ(i) for
i = 1, . . . , N , where 1θ(i) takes the value of one if i ∈ θ and
zero elsewhere.

Let Φ be an M ×N sensing matrix, M < N . Compressed
sensing [1], [2] addresses the recovery of x from linear
measurements of the form y = Φx ≈ ΦDs. Compressed
sensing results show that the signal x can be reconstructed
from y if the matrix Ξ = ΦD satisfies a condition, known as
the restricted isometry property (RIP) [29], with a sufficiently
small restricted isometry constant. If the sampling matrix Φ
is a sub–Gaussian matrix and the dictionary D is unitary, then
the matrix Ξ satisfies the RIP with high probability. However,
if the matrix D is overcomplete, the coherence between its
columns makes it difficult for the matrix Ξ to satisfy the
RIP with a sufficiently small restricted isometry constant [8].
Several works have addressed this limitation by designing the
sampling matrix Ξ so as to minimize the mutual coherence of
the effective dictionary Ξ [9], [10].

B. Deep learning architectures

Deep learning aims at learning hierarchical feature represen-
tations with higher level features formed by the composition
of lower level features [17]. Deep learning is inspired by bio-
logical structures in human brain mechanisms for processing
of natural signals. A deep learning architecture, the DBN [30],
is presented in this section.

Restricted Boltzmann machines are the building blocks of
DBNs. They are probabilistic generative models that learn
a joint probability distribution of training data. An RBM is
composed of a single visible layer and a single hidden layer.
The visible units, v = [v1v2 . . . vJ ]T , represent the input data
whose probability distribution needs to be modeled. The hid-
den units, h = [h1h2 . . . hP ]T , are trained to capture higher-
order data correlations that are observed at the visible units.
Symmetric connections between the layers are represented by
a weight matrix W. The structure of an RBM forms a bipartite
graph, as shown in Fig. 1(a).

In an RBM, the joint distribution p(v,h), over the visible
units v and the hidden units h, is defined as

p(v,h) =
exp(−E(v,h))

Z
, (1)

where E(v,h) is the energy function and Z =∑
v

∑
h exp(−E(v,h)) is the normalization term. For a

Bernoulli (visible)–Bernoulli (hidden) RBM, the energy
function takes the form

E(v,h) = −vTWh− bTv v − bThh, (2)
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Fig. 1. (a) Schematic of a restricted Boltzmann machine. (b) Schematic of a
deep belief network of one visible and three hidden layers (adapted from [32]).

where W denotes the weights between visible and hidden
units, and bv and bh are the bias terms. The RBM parameters,
i.e., W, bv and bh, can be optimized by performing stochastic
gradient ascent on the log–likelihood of training data. Given
that computing the exact gradient of the log–likelihood is
intractable, the contrastive divergence approximation [31] is
typically employed.

In an RBM, units within the same layer are not connected.
Therefore, the posterior distribution over hidden vectors fac-
torizes into a product of independent distributions for each
hidden unit. The conditional distributions over hidden and
visible units take the form

p(hj = 1|v) = σ((bh)j + WT
·jv), (3)

p(vi = 1|h) = σ((bv)i + WT
i·h), (4)

where σ(x) = (1 + e−x)−1, and W·j and Wi· correspond
to the jth column and ith row of matrix W, respectively.

A DBN architecture is composed of a stack of RBMs.
The lowest–level RBM learns a shallow model of the data.
The RBM at the next level captures high–order correlations
between the hidden units of the first, and so on. A DBN with
L layers models the joint distribution between the visible layer
v and the hidden layers hl, l = 1, . . . , L as follows

p(v,h1, . . . ,hL) = p(v|h1)

(
L−2∏
l=1

p(hl|hl+1)

)
p(hL−1,hL).

(5)
The log-probability of the training data can be improved by
adding layers to the network, which, in turn, increases the true
representational power of the network [30].

Let v = h0. The bias vector of layer l and the weight matrix
that represents the connections between layer l−1 and layer l
are denoted by bhl and Wl, respectively. A schematic repre-
sentation of a DBN with one visible and three hidden layers
is shown in Fig. 1(b). The top two layers form a restricted
Boltzmann machine, which is an undirected graphical model,
and the lower layers form a directed generative model.

The main breakthrough introduced by Hinton et al. [30]
was a greedy, layer–wise unsupervised learning algorithm that
allows efficient training of DBNs. This algorithm trains each
RBM separately, making the time complexity of the DBN
learning linear in the size and depth of the networks.
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Fig. 2. Block diagram of the proposed CS scheme when using overcomplete
learned dictionaries as the sparsifying transform.

III. PROPOSED COMPRESSED SENSING SCHEME

The proposed scheme requires training data of the same
class as the signal to be reconstructed. A training stage is
employed to learn a prior model for the sparsity pattern of
the signal class. The proposed CS reconstruction algorithm
exploits the determined prior in a MAP approach. The CS
and training stages are described thoroughly in this section.
The training stage varies depending on the employed spar-
sifying transform, either orthonormal bases or overcomplete
learned dictionaries. The block diagrams of the proposed CS
schemes for overcomplete dictionaries and orthonormal bases
are presented in Figs. 2 and 3, respectively.

A. Compressed sensing stage

1) Problem formulation: Let D ∈ RN×Q denote the spar-
sifying transform employed to represent a signal x ∈ RN , i.e.,
x = Ds+r, where s and r are the sparse representation and the
representation error, respectively. A Gaussian distribution with
zero mean and covariance Σr is assumed for r. In this paper,
we consider the traditional synthesis–based CS approach that
aims at reconstructing the sparse representation s of a signal
x from undersampled and noisy measurements of the form
y = Φx + n, where Φ ∈ RM×N is the sampling matrix and
n accounts for the additive Gaussian sampling noise of zero
mean and variance σ2

n. Vector y can also be written as

y = ΦDs + Φr + n. (6)

Let η = Φr + n and Ξ = ΦD, then vector y takes the
form

y = Ξs + η. (7)

As both r and n are Gaussian distributed, vector η is also
Gaussian distributed with zero mean and covariance Ση =
ΦΣrΦ

T +σ2
nI. We adopt the commonly used assumption that

the sampling noise variance σ2
n is known [14], [33], [34].

The approach proposed in [14] is adopted in this paper,
namely first calculating the MAP estimator of the sparsity
pattern and then calculating the MAP estimator of the sparse
vector. The support of s, of cardinality K, is denoted as θ. Let
sθ denote the nonzero coefficients of s. A Gaussian distribution
with zero mean and variance σ2

si is assumed for each nonzero
coefficient si, i ∈ θ. The same probability distribution is
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Fig. 3. Block diagram of the proposed CS scheme when using orthonormal
bases as the sparsifying transform.

employed in [14], [35] for nonzero sparse coefficients. Then,
the conditional distribution of sθ given θ is given by

sθ|θ ∼ N (0,Σθ), (8)

where Σθ ∈ RK×K is a diagonal matrix, whose diagonal is
formed by the variances of the nonzero coefficients σ2

si , i ∈ θ.
The Gaussian distribution of η leads to the following

distribution for the likelihood p(y|sθ, θ):

y|sθ, θ ∼ N (Ξθsθ,Ση), (9)

where Ξθ is the submatrix obtained by extracting the columns
of matrix Ξ corresponding to the indexes in θ. By integrating
the product of p(sθ|θ) and p(y|sθ, θ) over all possible sθ, an
expression for the probability distribution p(y|θ) is obtained,

p(y|θ) =C × det
(
ΞT
θ Σ−1

η ΞθΣθ + I
)−1/2

× exp
{

1

2
yTΣ−1

η ΞθP
−1ΞT

θ Σ−1
η y

}
,

(10)

where C = det(2πΣη)
−1/2exp

{
− 1

2yTΣ−1
η y

}
and P =

ΞT
θ Σ−1

η Ξθ + Σ−1
θ .

The MAP estimator of θ, denoted by θ̂, can be calculated
as

θ̂ = arg max
θ

p(θ|y) = arg max
θ

p(y|θ)p(θ). (11)

The posterior distribution p(sθ̂|y, θ̂) has a Gaussian distribu-
tion with mean µs and covariance Σs, such that

µs = Σθ̂Ξ
T
θ̂

(Ξθ̂Σθ̂Ξ
T
θ̂

+ Ση)−1y (12)

Σs = Σθ̂ −Σθ̂Ξ
T
θ̂

(Ξθ̂Σθ̂Ξ
T
θ̂

+ Ση)−1Ξθ̂Σθ̂. (13)

Therefore, the MAP estimate of s, denoted as ŝθ̂, is directly
obtained from the mean of the posterior, i.e.,

ŝθ̂ = arg max
sθ̂

p(sθ̂|y, θ̂), (14)

= Σθ̂Ξ
T
θ̂

(Ξθ̂Σθ̂Ξ
T
θ̂

+ Ση)−1y.

An expression for p(θ) needs to be calculated to solve (11).
Note that p(θ) = p (S). We propose to use the probability
distribution over visible units p(v) of RBMs and DBNs to
model the prior distribution p (S), or equivalently, p(θ).

Using RBMs to model the sparsity pattern probability
distribution is justified by results that show that an RBM
can model any discrete distribution and that adding hidden
units yields strictly enhanced modeling performance, unless

the RBM already perfectly models the data [15]. Similarly, the
use of deep belief networks is justified by their capabilities
to approximate any distribution over binary vectors to an
arbitrary level of accuracy, even when the width of each layer
is limited to the dimensionality of the data [16]. However,
DBNs offer an additional advantage over RBMs: they yield
more efficient and compact representations in terms of the
number of parameters [15].

2) Prior distribution: In an RBM, the probability distribu-
tion over visible units is obtained by marginalizing (1) over
the hidden units

p(v) =
∑
h

p(v,h) = − 1

Z
exp (−E(v)) , (15)

where

E(v) = −
∑
j

log
(

1 + eW
T
·jv+bhj

)
− bTvv. (16)

A DBN can be seen as a probabilistic generative model.
To calculate the probability distribution of the visible units
of a DBN, we start with a random configuration at the top
hidden layer, hL, and let the top–level RBM converge to
a stationary distribution using alternating Gibbs sampling.
Alternating Gibbs sampling iterates between updating the
hidden units in parallel using (3) and updating the visible units
in parallel using (4). Next, it performs a top–down pass in
which the state of each variable in a layer is chosen from a
Bernoulli distribution with the probability that a variable has a
value of one depending on the states of the layer above. That
is,

p(hli = 1|hl+1) = σ((bhl)i + Wl+1
i· hl+1), (17)

where, as before, v = h0.

Repeated top–down passes generates a full set of data
vectors at each layer of the DBN. Let H be the total number
of top–down passes. The sequence of data vectors for the
hidden layers is denoted as hl

(1)
, . . . ,hl

(H), l = 1, ..., L,
and v(1), . . . ,v(H), for the visible layer. Such sequence of
data vectors assigned to the visible layer can be employed
to give a rough approximation of the marginal distribution
p(v). However, the conditional density function p(v|h1) con-
tains more information about the shape of the distribution
p(v) than the sequence of the individual realizations since
p(v) = Eh1 [p(v|h1)], where E[·] denotes the expected value
of a random variable. Therefore, the marginal density is
approximated by p̂(v) = 1

H

∑H
k=1 p

(
v|h1(k)

)
. Since the

visible units are conditionally independent given the hidden
states h1, the approximation of p(v) takes the form

p̂(v) =
1

H

H∑
k=1

N∏
i=1

p
(
vi|h1(k)

)
. (18)

Using the probability distribution (15) to model p(θ) in (11)
leads to the following MAP estimator of θ:



5

θ̂ = arg max
θ

(
1

2
yTΣ−1

η ΞθP
−1ΞT

θ Σ−1
η y (19)

−1

2
log (det(PΣθ)) +

∑
j

log
(

1 + eW
T
·jS+bhj

)
+bTvS

)
.

Similarly, when using (18) to model p(θ) in (11), the MAP
estimator of θ becomes

θ̂ = arg max
θ

(
1

2
yTΣ−1

η ΞθP
−1ΞT

θ Σ−1
η y (20)

−1

2
log (det(PΣθ)) +log

(
H∑
k=1

N∏
i=1

p
(
Si|h1(k)

)))
Expressions (19) and (20) are combinatorial optimization

problems that require an exhaustive search over all possible
sparsity patterns of dimension K. Therefore, there is a need
to use algorithms that approximate the MAP solution to
overcome the intractability of the combinatorial search.

3) MAP estimator via a greedy approach: Peleg et al. [14]
proposed a greedy pursuit algorithm based on Orthogonal
Matching Pursuit (OMP) to approximate the MAP estimator
of a sparse representation. The same algorithm is used here
for reconstructing the sparse representation s, although using
a different posterior distribution than that in [14]. The support
is initialized to the empty set. At each iteration, the algorithm
searches for the element ī that can be added to the support
in order to maximize p(θ|y). The algorithm stops when any
additional element in the support decreases either the objective
function in (19), in the case of RBMs, or (20), in the case of
DBNs. The algorithm, at each iteration, makes locally optimal
choices with the hope that this will lead to the optimal global
solution. It is noted that the algorithm achieves the optimal
solution for supports of cardinality 1 since it goes through the
same computational stages as exhaustive search in this special
case.

Once the support is recovered, the sparse representation s is
calculated using (14). A summary of the algorithm is presented
in Algorithm 1. The functions gRBM(·) and gDBN(·) refer to
the objective functions in (19) and (20), respectively. If an
RBM is employed to model the prior distribution p(θ), the
function gRBM(·) is used and the algorithm is referred to as
the RBM–OMP–like algorithm. If a DBN is employed instead,
the function gDBN(·) is used and the algorithm is referred to
as the DBN–OMP–like algorithm.

4) Computational Complexity Analysis: The computational
complexity in Algorithm 1 is dominated by the calculation
of the functions in lines 6, gRBM(θ̄(t)) and gDBN(θ̄(t)). It is
assumed that all the operations that do not depend on θ̄(t)

are precomputed and do not contribute to the cost. Evaluation
of the first two terms of gRBM(θ̄(t)) is dominated by the
calculation of P, which costs O(KM2) flops. The third
and fourth terms cost O(NP ) and O(N) flops, respectively.
Therefore, calculating gRBM(·) costs O(KM2 + NP ) flops.
Let D denote the total number of iterations of the while

Algorithm 1 RBM–OMP–like/DBN–OMP–like algorithm
Require: Matrix Ξ = ΦD, measurements y, model parame-

ters defining the probability distribution p(θ|y).
1: Initialize t = 0, θ(0) = ∅.
2: while halting criterion false do
3: t← t+ 1
4: for i /∈ θ(t−1) do
5: θ̄(t) ← θ(t−1) ∪ i
6: f(i)← gRBM(θ̄(t)) or f(i)← gDBN(θ̄(t))
7: end for
8: ī← arg maxi f(i)
9: θ(t) ← θ(t−1) ∪ ī

10: end while
11: θ̂ ← θ(t)

12: return ŝθ̂ ← Σθ̂Ξ
T
θ̂

(Ξθ̂Σθ̂Ξ
T
θ̂

+ Ση)−1y.

loop in Algorithm 1. Since gRBM(·) needs to be calculated
D(N−1) times, the computational complexity of Algorithm 1
is O(DN(KM2 +NP )), when RBMs are employed.

The first two terms of gDBN(θ̄(t)) are the same as those of
gRBM(θ̄(t)), which means that their cost is O(KM2) flops.
Let C denote the number of units of the first hidden layer of
the DBN. Then, calculating the third term of gDBN(θ̄(t)) costs
O(CHN) flops and, therefore, the computational complexity
of Algorithm 1 becomes O(DN(KM2 + CNH)), when
DBNs are employed.

5) Selection of the probabilistic generative model: Even
though DBNs and RBMs have the same representational
power [15], they differ in the number of parameters needed
to model the probability distribution of the data. Deep Belief
Networks offer more compact representations. Indeed, in [17],
it was shown that deep architectures can sometimes be expo-
nentially more efficient than shallow ones in terms of number
of parameters needed to represent a function. More precisely,
there are functions that can be compactly represented with an
architecture of depth L but that would require exponential size
(with respect to input size) architectures of depth L− 1.

The number of parameters have computational and statis-
tical consequences, and, therefore, can be used as a factor
to decide which generative model to use. Since the number
of parameters one can afford depends on the number of
training samples available to learn them, the selection of
RBMs, which typically require more parameters than DBNs,
may lead to poor generalization. Also, the computational cost
of the training stage and reconstruction algorithms increases
with the number of parameters.

This result may initially suggest that DBNs should always
be selected. However, as shown in Section III-A4, the com-
putational complexity of the DBN-OMP-like algorithm also
depends on the number of top-down passes used for the
approximation of the probability distribution of the visible
layer. Therefore, the decision of which generative model
to use is data dependent as the exact number of required
parameters depends on the complexity of the data and the
amount of training data. We suggest to estimate the number
of parameters of the generative models using cross-validation,
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as described in Section III-B4, and then choose the generative
model that would lead to the lowest computational cost of the
reconstruction algorithm using the results in Section III-A4.

B. Training stage using Overcomplete Learned Dictionaries

In this section, the sparsifying transform D from (6) is
assumed to be an overcomplete dictionary. We learn D from
a set of training data belonging to the same class as signal
x. The resulting sparse codes and the representation error are
employed to estimate the model parameters defining p(θ|y).

1) Traditional dictionary learning: First, the dictionary
learning problem is described. Let G = [G·1 . . .G·B ] ∈
RN×B denotes the set of N -dimensional training samples,
which is referred to as training dataset I. One methodology
for building the overcomplete dictionary D = [D·1 . . .D·J ] ∈
RN×J (J > N) is to solve the following optimization problem

{D̂, Â} = arg min
D,A

‖G−DA‖2F s. t. ‖A·j‖0 < K, ∀j

(21)
with A = [A·1 . . .A·B ] ∈ RJ×B denoting the sparse codes of
G, and K the pre-specified sparsity level. The representation
error is defined as E = G−D̂Â. Several algorithms have been
proposed to solve (21). Here, the K–SVD algorithm proposed
by Aharon et al. [36] is employed. Rubinstein et al. [37] show
that the dominant operations in K-SVD are sparse-coding,
atom updates and coefficients updates, wich leads to a total
computational complexity of O(B(K3 + 2KNJ + 4NK +
4KJ) + 5NJ2).

2) Sampling matrix design: Even though an overcomplete
dictionary offers more flexibility and leads to sparser repre-
sentations compared to an orthonormal basis, the coherence
between its columns limits the performance of CS recovery
algorithms when using the traditional sub–Gaussian sensing
matrix [8]–[10]. That is why several works have focused
on how to design the sampling matrix to guarantee accurate
recoverability when using an overcomplete dictionary as the
sparsifying transform. For example, Elad [9] optimizes the
sampling matrix to minimize the coherence of the effective
dictionary. Similarly, Duarte et al. [10] also aims at minimizing
the coherence of the effective dictionary, with their approach
designed to make the columns of the effective dictionary as
orthogonal as possible. In this paper, the method of Duarte et
al. is employed to build the sensing matrix as it has superior
performance in terms of running time and accuracy of the
reconstructed signal. That is, the sensing matrix Φ is optimized
as to minimize the mutual coherence of the effective dictionary
ΦD.

3) Estimation of model parameters: This section addresses
the parameter estimation of p(θ|y), which comprises the pa-
rameter estimation of p(θ), the estimation of the variances σ2

si ,
∀i, and the estimation of the covariance Ση . Let U·j denote
the sparsity pattern of the sparse code A·j , j = 1, . . . , B.
The ith element of U·j is defined as Uij = 1supp(A·j)(i),
where supp(A·j) denotes the support of A·j . The set of
vectors U = [U·1 . . .U·B ] can be employed to model a prior
distribution for the sparsity pattern of signals belonging to
the same class as the training data. Since the signal to be

reconstructed, x, belongs to this class, the set of column
vectors of U, which are referred to as training dataset II, are
used to learn the parameters of p(θ). As mentioned in Section
III-A1, RBMs and DBNs are used for modeling such a prior
distribution.

In the case of the RBM model, the probability distribution
parameters that need to be estimated are the weight matrix
W and the bias terms bv and bh. They can be optimized by
performing stochastic gradient ascent on the log–likelihood
of the training dataset II. However, computing the exact
gradient of the log–likelihood is intractable. Here, we use
contrastive divergence, which approximates the gradient of the
log–likelihood by using a Markov chain. For more details on
contrastive divergence, the reader is referred to [31].

When the prior distribution of the sparsity pattern is mod-
eled with a DBN, the parameters that need to be estimated
are the weights and bias terms of each layer. Hinton presented
a powerful greedy layer–wise method to learn these parame-
ters [30]. The weight matrix W1, the bias terms of the visible
layer bv, and the bias terms of the lowest hidden layer bh1

are learned by training an RBM with the training dataset II
as input. Then, the inferred hidden values of h1 can be used
as input for training another RBM that learns the parameters
of the layer above. This bottom–up process is repeated at the
next layers until all the parameters of the network are learned.

Additionally, the set of sparse codes A can be employed
to estimate the variance σ2

si of each ith element of the sparse
representation s of signal x (see [14]):

σ̂2
si =

∑B
j=1 Aij

2∑B
j=1 1[i ∈ supp (A·j)]

. (22)

For the estimation of the covariance matrix Σr, indepen-
dence is assumed between the representation error coefficients
ri and rj for i 6= j. Therefore, the covariance matrix Σr is a
diagonal matrix, whose diagonal is formed by the variances of
the representation error coefficients σ2

ri , for i = 1, . . . , N . For
the estimate of Σr, denoted as Σ̂r, the representation error of
the learned dictionary E = [E·1 . . .E·B ] is employed. More
precisely, each ith diagonal element of Σr is estimated as

σ̂2
ri =

1

B

B∑
j=1

E2
ij . (23)

The estimate of Ση is directly calculated as Σ̂η = ΦΣ̂rΦ
T +

σ2
nI.
4) Selection of number of hidden layers and units: For

the selection of the number of hidden layers and units of a
DBN, hereafter referred to as hyperparameters, a validation
dataset is employed. The selection of the hyperparameters
is performed by grid search on the parameter space using
holdout cross-validation. For every combination of hyperpa-
rameter values in the grid, the weights and biases of the
DBN are learned using the training dataset I, which results in
different DBN configurations. Those configurations are then
used with the validation dataset. That is, the validation dataset
is sampled with the sampling matrix Φ and recovered with the
DBN-OMP-like reconstruction algorithm using the different
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DBN configurations. The reconstruction SNR of the validation
dataset, across the different architecture configurations, is used
as a metric to determine the number of hidden layers and
units. The same approach is employed for the selection of the
number of hidden units in RBMs.

C. Training stage using Orthonormal bases

As in Section III-B1, let G = [G·1 . . .G·B ] ∈ RN×B

denote the set of N -dimensional training samples belonging
to the same class as signal x. In this section, D does not
denote an overcomplete dictionary, but instead, it denotes
an orthonormal basis. Each vector G·j can be expressed as
G·j = DĀ·j , where Ā·j is the representation of the signal
G·j in the D domain. Let A·j denote the best K-term
approximation of Ā·j , which is obtained by keeping only the
K largest (in magnitude) coefficients in Ā·j and setting the
others to zero. Therefore, the signal G can be modeled as
G = DA + E, where E is the representation error matrix.

Let U·j denote the sparsity pattern of the sparse code A·j ,
Uij = 1supp(A·j)(i). As in the case of overcomplete dictionar-
ies, the sparse codes A = [A·1 . . .A·B ], U = [U·1 . . .U·B ],
and the representation error E = [E·1 . . .E·B ] are used to
learn the model parameters defining p(θ|y). That is, the set
of vectors U is used to train either the RBM or the DBN
that models p(θ), the sparse codes A are used to estimate
the variances σ2

si ,∀i, using (22), and E is used to estimate
σ2
si ,∀i, using (23). For the selection of the generative model

configuration, the same procedure described for overcomplete
dictionaries in Section III-B4 is employed.

Unlike the case of overcomplete dictionaries, the training
stage does not require optimization of the sensing matrix. For
the case of orthonormal bases, the entries of the sampling
matrix Φ ∈ RM×N are independently sampled from a normal
distribution with mean zero and variance 1/M .

IV. EXPERIMENTAL RESULTS

To validate the proposed compressed sensing schemes, a set
of experiments are conducted with synthetic and real signals.
Results are presented for averages of 50 repetitions of each
experiment, with a different realization of the measurement
matrix at each iteration. The reconstruction SNR (R–SNR) and
the peak SNR (PSNR) are employed as performance measures
for one-dimensional signals and images, respectively. The
reconstruction SNR is defined as

R–SNR (dB) = 10log10
‖x‖22
‖x− x̂‖22

, (24)

where x and x̂ denote the N -dimensional original and recon-
structed signals, respectively. The PSNR is defined as

PSNR (dB) = 10log10
R2

MSE
, (25)

where R is the maximum possible pixel value of the image
(255 for 8–bit images) and MSE denotes the mean–square
error defined as MSE = 1

N ‖I − Î‖2F , where I and Î denote
the original and reconstructed images of size

√
N ×

√
N ,

respectively.

In the experiments presented in this section, the proposed
methods are compared with the oracle estimate in order to
illustrate the best achievable reconstruction. An oracle reveals
the true support set θ. Then, such support is used to obtain
the estimate of the sparse representation using (14).

In [38]–[40], a number of samples equal to 500 leads to a
good approximation of the empirical average using sampling-
based methods. Following the same choice, the number of
samples H for the estimation of the probability distribution of
the DBN visible layer is set to 500 in our experiments.

A. Experiments with synthetic signals
The first set of experiments assume that the parameters of

the RBM and DBN are known. The motivation of these exper-
iments is to prevent errors in the parameter estimation, which
takes place during training, to propagate into the reconstruction
algorithm and, therefore, attain a more faithful evaluation of
the algorithm.

For the first experiment, a set of 50000 sparsity patterns
from an RBM, whose parameters are known, are generated
via Gibbs sampling. From this set, 45000 and 5000 sparsity
patterns are selected at random for training and testing, respec-
tively. The number of hidden units is set equal to the number
of visible units. Synthetic signals of dimension N = 256 are
formed with the sparsity patterns and the magnitude of each
nonzero coefficient is drawn from a Gaussian distribution with
zero mean and known variance σ2

si ∈ [10, 50]. The weights
and hidden bias terms are drawn from a uniform distribution,
{bhj ,Wij} ∼ U(−1, 1),∀i, j. The visible bias terms are set
to −14 to enforce sparsity. A Gaussian sensing matrix Φ
is employed to sample the testing dataset. Gaussian noise of
variance σ2

n = 1 is added to the measurements. Note that as
the synthetic signals are already sparse, a sparsifying transform
is not necessary, or equivalently, D = I.

The proposed algorithms, RBM–OMP–like and DBN–
OMP–like, are executed on the random measurements of the
testing dataset and the results are compared with the traditional
OMP and with the oracle estimate (14). The RBM-OMP-like
algorithm uses the same parameters of the RBM employed to
generate the sparsity patterns. The DBN–OMP–like algorithm
uses a 2-layer DBN model whose parameters are estimated
using the training dataset, as described in Section III-B3. The
number of hidden units per layer of the DBN is set the same
as the number of visible units.

The mean R-SNR across samples of the testing dataset are
shown in Fig. 4(a). Performance gains are observed when
using the proposed algorithms. Indeed, their performance is
very close to that of the oracle estimate for M > 0.35N . The
proposed algorithms require fewer measurements than the tra-
ditional OMP to achieve successful reconstruction. The RBM-
OMP-like algorithm slightly outperforms the DBN-OMP-like
algorithm since the data is generated from a probabilistic
model that exactly matches the one used by the RBM-OMP-
like algorithm. Figure 4(b) illustrates the standard deviation of
the R-SNR across samples of the testing dataset. The proposed
algorithms have lower R-SNR standard deviation than OMP
for M/N > 0.25, which corresponds to their measurement
range of successful reconstruction.
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Fig. 4. Comparison of the reconstruction of synthetic signals generated with
the RBM model using OMP, the RBM-OMP-like algorithm, the DBN-OMP-
like algorithm, and the oracle estimator.

A similar experiment is conducted with 50000 signals
generated from a 2–layer DBN, whose parameters are known a
priori. The number of hidden units per layer is set the same as
the number of visible units. The weights and hidden bias terms
are drawn from a uniform distribution, {bh1

j
,W 1

ij , bh2
j
,W 2

jk} ∼
U(−1, 1),∀i, j, k. The visible bias terms are set to −6.5 to
enforce sparsity. As in the previous experiment, 45000 and
5000 sparsity patterns are selected at random for training
and testing, respectively. The sampling noise variance and
the variance of the nonzero coefficients are kept the same as
in the previous experiment, σ2

n = 1 and σ2
si ∈ [10, 50],∀i,

respectively.
In this experiment, the proposed algorithms, traditional

OMP, and the oracle are employed for reconstruction. The
DBN-OMP-like algorithm uses the same parameters of the
DBN employed to generate the sparsity patterns. The RBM–
OMP–like algorithm uses an RBM model whose parameters
are estimated using the training dataset, as described in Sec-
tion III-B3. The number of hidden units of the RBM is set
the same as the number of visible units. Figure 5(a) indicates
that the proposed algorithms outperform OMP, particularly for
low–measurement regimes, which demonstrates that exploiting
the structural information of the signal’s sparsity pattern has
the ability to boost the reconstruction performance.

For example, at a measurement rate of M = 0.3N , the
DBN–OMP–like algorithm provides a 4.5 dB mean PSNR
improvement in performance over OMP. The results are favor-
ably biased towards the DBN–OMP–like algorithm as it uses
a distribution that exactly matches the one used to generate
the data. The results in Fig. 5(b) indicate that the proposed
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Fig. 5. Comparison of the reconstruction of synthetic signals generated with
the DBN model using OMP, the RBM-OMP-like algorithm, the DBN-OMP-
like algorithm, and the oracle estimator.

algorithms only have higher R-SNR standard deviation than
OMP for very low–measurement regimes, M/N < 0.23.

Next, we demonstrate that the proposed algorithms are
stable in the presence of measurement noise using the same
datasets as those of the previous experiments. For this exper-
iment, the number of measurements is set to M = 0.4N , as
Figs. 4 and 5 indicate that the reconstruction is successful
when such a number of measurements is used. The Gaussian
sensing matrix is kept fixed while the sampling noise variance
is varied in the range [0.5, 2.5]. Table I indicates that both
RBM–OMP–like and DBN–OMP–like algorithms outperform
the traditional OMP algorithm for the specified range of
variances. Below σ2

n = 2, the proposed algorithms produce
faithful reconstructions with an SNR greater than 26 dB.

B. Experiments with the MNIST Database

In this section, the performance of the proposed recon-
struction algorithms as a function of the number of hidden
units and hidden layers is studied via numerical experiments.
The MNIST dataset [41], which contains 70000 grayscale
images of handwritten digits of size N = 28 × 28, is
employed for the experiments. The dataset is divided into
40000 samples for training, 20000 samples for validation and
10000 samples for testing. Since the images are already sparse
in the spatial domain, a sparsifying transform is not necessary,
or equivalently, D = I. The validation and testing datasets are
sampled with a matrix Φ whose entries are drawn from a zero–
mean Gaussian distribution with variance 1/M . The resulting
compressed measurements are artificially contaminated with
Gaussian noise of variance σ2

n = 1.2.
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TABLE I
RECONSTRUCTION SNR FOR DIFFERENT SAMPLING NOISE VARIANCES, σ2

n .

Model used to
generate dataset

Reconstruction
algorithm

σ2
n

0.5 0.6 0.7 0.8 0.9 1 1.5 2 2.5

RBM-based model
RBM-OMP-like 31.19 30.32 29.38 29.26 28.94 28.52 28.39 26.96 24.65
DBN-OMP-like 30.89 30.02 29.08 28.95 28.71 28.18 28.09 26.78 23.87

OMP 28.72 27.62 26.53 26.08 25.61 24.57 24.14 20.74 7.95

DBN-based model
RBM-OMP-like 29.7 28.77 28.29 28.14 27.96 27.54 27.24 26.59 24.61
DBN-OMP-like 29.81 28.85 28.36 28.18 28.04 27.62 27.33 26.66 25.02

OMP 27.7 26.75 25.86 25.64 25.39 24.76 24.02 22.14 11.69

As described in Section III-B4, the optimal model configura-
tions are selected via cross-validation. RBM and DBN models
with different number of hyperparameters are learned using
the training dataset and evaluated using the validation dataset.
Figure 6(a) illustrates the mean PSNR across samples of the
validation dataset as a function of the number of measure-
ments for different RBM models, which are employed by the
RBM–OMP–like algorithm. The reconstruction performance
improves as the number of hidden units of the RBM model
increases from 0.5N to 8N . The standard deviation across
samples of the validation dataset also increases as the number
of hidden units increases (Fig. 6(b)). The reconstruction curves
in Fig. 6(a) corresponding to RBMs with 8N and 16N
hidden units are very similar, which may indicate that their
representational power is almost the same. Therefore, setting
the number of hidden units above 8N does not improve
the reconstruction performance and may lead to overfitting.
Consequently, we select an RBM with 8N hidden units for
testing.

Tramel et al. also evaluated their RBM-based reconstruction
method using the MNIST database [22]. They employed the
percent of successfully recovered digit images as performance
metric instead of the mean R-SNR. They showed that they
could successfully recover 90% digit images from their testing
dataset with only 0.25N measurements, while we attain poor
reconstruction performance when using only 0.25N measure-
ments as it is shown in Fig. 6(a). However, this is not a fair
comparison since the authors of [22] selected different values
for the model and experiment parameters. For example, they
selected a noise variance that was much smaller than ours, a
larger training dataset and a smaller testing dataset. The RBM–
OMP–like algorithm is expected to improve the reconstruction
performance of the MNIST dataset when noise of smaller
variance is added to the signals.

A similar experiment is performed to select the number
of hidden layers of the DBN employed by the DBN–OMP–
like algorithm. Deep and narrow belief networks, with hidden
layers of the same dimension as that of the visible layer,
are considered. Figures 7(a) and 7(b) illustrate that the mean
PSNR and standard deviation across samples of the validation
dataset increase as the number of hidden layers changes
from L = 2 to L = 3, respectively. Setting the number of
hidden layers above 3 does not improve the reconstruction
performance, which suggests that the representational power
of the DBN does not improve for L > 3. Therefore, we
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Fig. 6. Evaluation of the MNIST validation dataset reconstruction using RBM
models with different number of hidden units.

select a DBN with 3 hidden layers, whose number of hidden
units per layer is the same as the number of visible units, for
testing. By comparing Figs. 6 and 7, it is noted that using an
RBM with 8 hidden units leads to a similar performance as
using a DBN with three hidden layers. However, the DBN
architecture requires fewer parameters to be trained. More
precisely, the RBM model requires 8N2 + 9N = 4924304
parameters (8N2 weights and 9N bias terms) while the DBN
model only requires 3N2 + 4N = 1847104 parameters (3N2

weights and 4N bias terms). This comparison illustrates that
RBMs and DBNs have the same representational power, but
DBNs may lead to more compact representations.

Figures 8 compares the performance of the proposed algo-
rithms on the testing dataset, using the model configurations
chosen via cross-validation, with CS reconstruction algo-
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Fig. 7. Evaluation of the MNIST validation dataset reconstruction using DBN
models with different number of hidden layers.

rithms, such as OMP and basis pursuit denoising (BPDN) [42].
We also compare with the MAP–OMP–like algorithm pre-
sented in [14] (henceforth referred to as FV–OMP-like al-
gorithm), which has the same structure as the RBM–OMP–
like algorithm, with the difference being that it employs a
fully visible Boltzmann machine to model the probability
distribution of the sparsity pattern. The proposed algorithms
attain the best reconstruction performance, followed closely
by the FV–OMP–like algorithm, which also achieves suc-
cessful reconstruction given that it also exploits statistical
dependencies in the sparsity pattern. Algorithms that do not
exploit structural information beyond sparsity require more
measurements to achieve successful reconstruction than the
proposed algorithms. For example, OMP and BPDN require
M > 0.41N to attain PSNR > 25 dB. Contrarily, the proposed
algorithms only require M > 0.35N measurements to attain
PSNR > 25 dB. On the downside, the proposed algorithms
have higher PSNR standard deviation than BPDN as shown
by Fig. 8(b).

C. Experiments with the Berkeley segmentation dataset

This section presents experimental validation of the pro-
posed algorithms using real data from the Berkeley segmen-
tation dataset [43]. This dataset contains 400 images of real–
life scenes. Each image is comprised of 321 × 481 pixels.
Experiments are conducted with the proposed compressed
sensing schemes using orthonormal bases and overcomplete
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Fig. 8. Evaluation of the reconstruction of images from the MNIST dataset.
The OMP, BPDN, FV-OMP-like, RBM-OMP-like, DBN-OMP-like, and the
oracle are employed as reconstruction algorithms.

learned dictionaries as sparsifying transforms. The training
dataset for these experiments consists of 50400 patches of size
N = 8 × 8, extracted at random from a set of 350 images.
Similarly, the testing dataset consist of 2000 8 × 8 patches,
extracted at random from a different set of 50 images. The
same number of patches is extracted from each image.

An RBM with the same number of hidden units as visible
units and a 2–layer DBN are employed to model the probabil-
ity distribution of the sparsity pattern. The number of hidden
units per layer of the DBN is set to half the number of visible
units. Compressed measurements are artificially contaminated
with Gaussian noise of variance σ2

n = 1. In the case of
orthonormal bases, the entries of the sensing matrix Φ are
drawn from a zero–mean Gaussian distribution with variance
1/M . In the case of overcomplete learned dictionaries, the
sensing matrix is optimized as described in [10] and the
number of dictionary atoms is set to 2N . The sparsity level
for overcomplete dictionaries is set to K = 0.15N .

The scheme illustrated in Fig. 3 is considered first. Since the
wavelet transform has proven useful for compressing natural
images, the Symlets–8 wavelet transform, using a decompo-
sition level L = 4, is chosen as the orthonormal sparsify-
ing transform for our experiments. The proposed algorithms,
RBM–OMP–like and DBN–OMP–like, are compared with the
oracle estimator, OMP, and BPDN. We also compare with
other algorithms that exploit structural information beyond
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Fig. 9. Evaluation of the reconstruction of natural images from random
projections using wavelets as the sparsifying transform. The oracle estimator,
OMP, BPDN, TS-BCS, FV-OMP-like, RBM-OMP-like, and DBN-OMP-like
are employed as reconstruction algorithms.

sparsity, such as the Bayesian compressed sensing algorithm
described in [44] (henceforth referred to as TS-BCS) and
the FV–OMP-like algorithm, which has the same structure as
the RBM–OMP–like algorithm, with the difference being that
it employs a fully visible Boltzmann machine to model the
probability distribution of the sparsity pattern.

In this experiment, the true support revealed by the oracle
corresponds to the best K–term approximation of the signal to
be recovered. As in our proposed algorithms, the FV–OMP–
like algorithm requires the parameters of the support prior
distribution. Such parameters are learned from the training
dataset using the maximum likelihood approach described
in [14].

The results of the comparison in terms of mean PSNR across
the testing dataset are reported in Fig. 9(a). It is noted that both
RBM–OMP–like and DBN–OMP–like algorithms outperform
OMP, BPDN, TS-BCS, and the FV–OMP–like algorithm. The
number of parameters of the RBM and DBN models are N2+
2N (N2 weights and 2N bias terms) and 3N2/4+2N (3N2/4
weights and 2N bias terms), respectively. Even though the
DBN requires fewer parameters to be learned, the performance
of the DBN–OMP–like algorithm is slightly superior to that of
the RBM–OMP–like algorithm due to the multi–layer structure
of the DBN. As the reconstruction performance is related to
the representational power of the model, the results in Fig. 9(a)
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Fig. 10. Evaluation of the reconstruction of natural images from random
projections using overcomplete learned dictionaries as the sparsifying trans-
form. Dictionary training algorithms DL1 and DL2 are employed. The OMP,
BPDN, FV-OMP-like, RBM-OMP-like, and DBN-OMP-like are employed as
reconstruction algorithms.

are consistent with the work by Le Roux et al. [15], which
shows that, even though a DBN and an RBM can have the
same representational power, a DBN offers a more compact
and efficient representation in terms of number of parameters.

Figure 9(b) illustrates the standard deviation of PSNR across
samples of the testing dataset for the different reconstruction
algorithms. The FV–OMP–like algorithm exhibits the largest
standard deviation for almost the entire measurement range.
Compared to the other algorithms, the proposed algorithms
exhibit low standard deviation for M/N > 0.3.

Consider next the implementation of the scheme illustrated
in Fig. 2. In this case, the overcomplete dictionary is learned
using the K–SVD algorithm. An experiment is conducted
to evaluate the performance of the proposed algorithms and
the results of the mean PSNR across the testing dataset are
shown in Fig. 10(a). The RBM–OMP–like and DBN–OMP–
like algorithms do not only require fewer measurements than
conventional OMP to achieve stable recovery but also attain
higher mean PSNR values for the entire range of measure-
ments. There is a small performance gap in favor of the DBN–
OMP–like algorithm when compared to the RBM–OMP–like
algorithm. The proposed algorithms also outperform the FV–
OMP–like algorithm, which suggests that exploiting higher–
order dependencies between the sparse representation co-
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Fig. 11. Visual evaluation of the proposed reconstruction algorithms using overcomplete dictionaries and the wavelet basis as sparsifying transforms.
M = 0.2N . First row: (a) Original image. Second row: (b-e) Reconstructed images using a wavelet basis as sparsifying transform (b) OMP reconstruction,
PSNR=17.09, (c) FV-OMP-like reconstruction, PSNR=22.7, (d) RBM-OMP-like reconstruction, PSNR=24.19, (e) DBN-OMP-like reconstruction, PSNR=25.04.
Third row: (f-i) Reconstructed images using an overcomplete learned dictionary as sparsifying transform, (f) OMP reconstruction, PSNR=20.11, (g) FV-OMP-
like reconstruction, PSNR=24.28, (h) RBM-OMP-like reconstruction, PSNR=25.82, (i) DBN-OMP-like reconstruction, PSNR=27.1.

efficients leads to superior reconstruction performance. As
in the previous experiment, the proposed algorithms exhibit
lower standard deviation than the FV–OMP–like algorithm
(Fig. 10(b)).

Finally, visual evaluation of a reconstructed test image using
the proposed CS schemes is presented in Fig. 11. Each non–
overlapping 8 × 8 patch from the image was reconstructed
from their noisy projections using M = 2×N measurements
and sampling noise of variance σ2

n = 1. The first row of
Fig. 11 shows the original image (Fig. 11(a)). The second
and third rows show the results when using wavelets and
overcomplete dictionaries as sparsifying transforms, respec-
tively. In the second and third rows, the first, second, third
and fourth columns correspond to the reconstruction via the
OMP, FV–OMP–like, RBM–OMP–like and DBN–OMP–like
algorithms, respectively. For both overcomplete dictionaries
and orthonormal bases, the RBM–OMP–like and DBN–OMP–
like algorithms generate higher quality images than the OMP
and FV–OMP–like algorithms, as can be noticed by the
reduction of artifacts, the sharper edges, and the preservation
of details. In contrast, images reconstructed with the OMP
algorithm have poor quality as OMP does not exploit any
structure beyond sparsity.

V. CONCLUSIONS

Deep learning is one of the most powerful representation
learning techniques. In this paper, it was shown how the ability

of one deep learning architecture, the deep belief network, and
restricted Boltzmann machines to capture the complex statisti-
cal structure of the input data can be leveraged by CS systems.
Statistical dependencies are informative and exploiting them
leads to improvements in reconstruction performance.

The proposed scheme operates over signals belonging to
a certain signal class. In this paper, the signal classes of
natural images from the Berkeley Segmentation Dataset and of
handwritten digits from the MNIST Database were selected,
but the scheme can also be applied to other signal classes;
e.g. radar, ECG, EEG, medical imaging, speech signals, etc.
Restricted Boltzmann machines and DBNs were employed to
model a prior distribution for the sparsity pattern of the signal
class. Such a prior was employed by a MAP estimator for
the reconstruction. It was shown through simulations that the
proposed scheme leads to significantly superior reconstruction
results when compared with CS methods that do not exploit
any statistical dependencies between dictionary atoms. The
proposed approach also outperforms CS methods that only
exploit pair–wise correlations between dictionary atoms.
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