ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Optimal Word Embeddings for Text Classification Representations

Anonymous ACL submission

Abstract

Word embeddings have introduced a com-
pact and efficient way of representing text
for further downstream natural language
processing (NLP) tasks. Most word em-
bedding algorithms are optimized at the
word level. However, many NLP ap-
plications require text representations of
groups of words, like sentences or para-
graphs. In this paper, we propose a su-
pervised algorithm for finding text embed-
dings that uses labeled texts to produce
an “optimal” weighted average of word
embeddings for a given task. Our pro-
posed text embedding algorithm combines
the compactness and expressiveness of
the word-embedding representations with
the human-interpretability of a BoW-type
model, where weights correspond to ac-
tual words. Numerical experiments across
different domains show the competence of
our algorithm.

1 Introduction

Word embeddings, or a learned mapping from
a vocabulary to a vector space, are essential
tools for state-of-the-art Natural Language Pro-
cessing (NLP) techniques. Dense word vec-
tors, like Word2Vec (Mikolov et al., 2013a) and
GLoVE (Pennington et al., 2014), are compact
representations of a word’s semantic meaning, as
demonstrated in analogy tasks (Levy and Gold-
berg, 2014) and part-of-speech tagging (Lin et al.,
2019).

Most downstream tasks, like sentiment analysis
and information retrieval (IR), are used to analyze
groups of words, like sentences or paragraphs. For
this paper, we refer to this more general embed-
ding as a “text embedding”.

In this paper we propose a supervised algorithm
for finding text embeddings that uses labeled texts
to produce an “optimal” weighted average of word
embeddings for texts for that task.

Our algorithm computes the text embedding by
performing weighted average of the words present
in the given text, these weights are computed in a
supervised manner by using labels provided with
the text. The weights that we obtain define the
importance of the words with respect to the super-
vised learning task at hand. Words with higher ab-
solute weights have higher importance in the given
supervised task. For example, in a supervised
task of classifying movie reviews talking about
action movies from romantic movies, words like
“action”, “romance”, “love”, and “blood”, will
get precedence over words, like "movie”, ’i”, and
“theater”. This leads to the shifting of the text vec-
tor towards words with larger weights, as can be
seen in Figure 1.

When we use unweighted averaged word em-
bedding (UAEm) (Wieting et al., 2015) for repre-
senting the two reviews, we see that all the words
get the same importance, due to which the reviews
- I like action movies” and ”’I prefer romance
flicks” - end up close to each other in the vector
space. Our algorithm, on the other hand, identifies
“romance” and “action” as two important words
in the vocabulary for the supervised task, and as-
signs weights with high absolute value to these
words. This leads to shifting of the representation
of the two reviews toward their respective impor-
tant words in the vector space, increasing the dis-
tance between them. This indicates that, for the
task of identifying an action movie review from a
romantic movie review, there is less similarity be-
tween the sentences than what was indicated by
UAEm.

Our algorithm has many advantages over sim-
pler text embedding approaches, like bag-of-



ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

| romance
o

.Iike

action ¢ © prefer

flicks® @
movies

UAEm for “I prefer romance flicks”

®  UAEm for “I like action movies”

<> Distance between two embeddings

| romance
[ ]

» like
® prefer

/
action -
PR

flicks® @
movies

OpEm for “I prefer romance flicks”

®  OptEm for “I like action movies”

<> Distance between two embeddings

Figure 1: Unweighted (UAEm) (left) and Optimal embeddings (OptEm) (right) of two movie reviews
in feature space. Distance between the two reviews increases for OptEm representation of the text.

words (BoW) and the averaged word-embedding
schemes discussed in Section 2. In Section 4,
we show results from experiments on different
datasets. In general, we observed that our algo-
rithm is competitive with other methods. Unlike
the simpler algorithms, our approach finds a task-
specific representation. While BoW and some
weighting schemes, like tf-idf, rely only on word
frequencies to determine word importance, our al-
gorithm computes how important the word is to a
specific task. We believe that for some applica-
tions, this task-specific representation is important
for performance; one would expect the importance
of words to be very different whether you are try-
ing to do topic modeling or sentiment analysis.

Additionally, our algorithm yields a more in-
terpretable result than looking at the weights cor-
responding to the word-embedding dimensions
that have no human-interpretable meaning. Ef-
fectively, our text embedding algorithm com-
bines the compactness and expressiveness of the
word-embedding representations with the human-
interpretability of a BoW-type model.

Rest of the paper is organized as follows: in sec-
tion 2, we discuss related work. Later, in section
3, we present a detailed explanation and mathe-
matical justification to support our proposed algo-
rithm. In section 4, we present numerical exper-
iments, followed by conclusions and future work
in section 5.

2 Related Work

Various representation techniques for text have
been introduced over the course of time. In the
recent years, none of these representations have
been as popular as the word embeddings, such
as Word2Vec (Mikolov et al., 2013a) and GLoVE
(Pennington et al., 2014), that took contextual us-
age of words into consideration. This has led to
very robust word and text representations.

Text embedding has been a more challenging
problem over word embeddings due to the vari-
ance of phrases, sentences, and text. Le (2014)
developed a method to generate the embeddings
that outperforms the traditional bag-of-words ap-
proach (Harris, 1954). More recently, deeper neu-
ral architectures have been developed to gener-
ate these embeddings. Some of these architec-
tures involve sequential information of text, such
as LSTMs (Palangi et al., 2016).

Methods have been developed that use word
embeddings to generate text embeddings without
having to train on whole texts. These methods
are less costly than the ones that train directly on
whole text, and can be implemented faster. Un-
like the bag-of-words representation, most of these
embeddings are label-independent.

Unweighted average word embedding (Wieting
et al., 2015) generated text embeddings by com-
puting average of the embeddings of all the words
occurring in the text. This is one of the most
popular methods of computing text embeddings
from trained word embeddings, and, though sim-
ple, has been known to outperform the more com-



ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

plex text embedding models especially in out-of-
domain scenarios. Arora (2017) provided a sim-
pler method to enhance the performance of text
embedding generated from simple averaged em-
bedding by the application of PCA.

The unsupervised text embedding methods face
the problem of importance-allocation of words
while computing the embedding. This is impor-
tant, as word importance determines how biased
the text embedding needs to be towards the more
informative words. DeBoom (2016) introduced a
method that would assign importance to the words
based on their tf-idf scores in the text.

Our method generates weights based on the im-
portance of the words perceived through a super-
vised approach. We use classifiers to determine
the weights of the words based on their importance
captured through the procedure. The advantage of
this method over other methods is that we keep the
simplicity of Wieting’s algorithm (2015), while in-
corporating the semantically agreeable weights for
the words.

3 Optimal Word Embeddings

A sentence, paragraph or document can be repre-
sented using word2vec as follows:

k
AZ' = Z&ij)\jvj (1)
7=1

where,
A; € R™ is a vectorial representation (we will re-
fer it as text2vec in rest of the paper) of ith sample;
We will assume that A; is the it" row of a matrix
A € R™*™ containing a collection of m docu-
ments, k is the number of words in the word2vec
corpus V;
Aj € R is a weighting factor associated with the
Jjth word v; € V. Note that for the widely used
averaged text2vec representation (Wieting et al.,
2015), A; = 1,Vj; and
0;; is anormalized occurrence count. It is the num-
ber of times jth word appears in the document i
divided by the total number of words in the docu-
ment ¢.
Our proposed algorithm assumes that we have
a supervised classification problem for which we
want to find an optimal representation at the docu-
ment (text) level from the word embeddings.
More concretely, we consider the problem of
classifying m points in the n-dimensional real

space R, represented by the m X n matrix A,
according to membership of each point A; in the
classes +1 or -1 as specified by a given m x m di-
agonal matrix D with ones or minus ones along its
diagonal.
In general this linear classification problem can
formulated as follows:
Wi CHOT R o
st. D(Aw—evy)+y > e

where e € R”*! is a column of ones; y € R"™*!
is a slack vector; and (w,~y) € RFDX1 repre-
sents the separating hyperplane. L is a loss func-
tion that is used to minimize the misclassification
error, R is a regularization function used to im-
prove generalization, and c is a constant that con-
trols the trade-off between error and generaliza-
tion.

Note that, if L(.)=||(.)+||3 and R(.)=||.||3, then
equation (2) corresponds to an SVM formulation
(Lee and Mangasarian, 2001). The correspond-
ing unconstrained convex optimization problem is
given as:

minef|(e = D(Aw = e9)4 [l + [wlf ()

which we will denote by
(w,7) = SVM(A, D, c) )

From (1), we can rewrite A as:

Ay Zl?:l 01A;v;
. Az _ >j=102jAjv; 5)
N i .
Am] |31 SmiAjvs
That is,
A= AAV (6)

where A € R™*k: is a matrix of occurrences

count with §;; in the (i,j) position. A =

diag((M, ..., \)) € R¥¥E and V' € RFX™ is the

matrix whose rows are all the word2vec vectors

considered in the word2vec corpus or dictionary.
From (3) and (6),

min cf[(e - D(AAV)w - e7))+ I3+ lwli3 ()
where A = (A1,...,\g) .
Formulation (7) is a biconvex optimization
problem, which can be solved using alternate op-
timization (Bezdek and Hathaway, 2003). By



ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

solving this problem, not only do we obtain an
SVM-type classifier, but also learn the optimal
importance weights for each word in our corpus
(A1, ..., Ax). Though we could have restricted the
A to be positive, we choose to leave them uncon-
strained in order to make our algorithm more scal-
able and computationally efficient. Another inter-
esting consideration would be to add a relative im-
portance constrained on addition to the non nega-
tivity bounds of the form:

A+ A, =1 (8)
but again, we choose not too for computationally
efficiency. We will explore this option in the fu-
ture.

In (7), if we fix A to a constant A, we have:

A=AAV 9)

We can obtain the corresponding optimal solution
for (w, ) by solving (wx,v*) = SVM(A, D, c).

On the other hand, if we fix (w,7y) = (0,7%),
we get

A = (AAV ) = (AW)A (10)
where W € RF*F = diag (). 3

§imilarly, from (7) and (10) and making M =
AW, we have

min y, fl(e — DA — e9))4 |3 + |13
= min,y, e (e — DOTA - )3
(1D
since W is a constant.

We can obtain an approximate optimal (X, )
by solving (A\*,7*) = SVM (M, D, c). Note that
this solution will consider a regularization term for
A

We are ready now to describe our proposed al-
ternate optimization (AO) algorithm to solve for-
mulation (7).

One of the advantages of the algorithm is that it
can be easily implemented by using existing open-
source SVM libraries, like the ones included in
scikit-learn (scikit-learn, 2017).

The optimal text embedding algorithm, then, in-
herits the convergence properties and characteris-
tics of the AO problems (Bezdek and Hathaway,
2003). It is important to note that the set of pos-
sible solutions to which Algorithm 1 can converge
can include certain type of saddle points (i.e. a
point that behaves like a local minimizer only

Algorithm 1: Optimal Text Embedding
Input

: Training vocabulary matrix (V);
scaled word occurrence matrix (A);
vector of labels diag(D);
max number of iterations maxiter;
tolerance tol,;
regularization parameters c¢; and co;

Output: optimal word weight vector A*;

classification hyperplane (w*,~*);

1 Initialize V5 A\;=1; Ap=diagonal()

2 1=0;

3 while i < maxiter or ||[A; — Ai—1]| > tol do
4 iter++;

5 Given A;_1, calculate A = AA,_,V;
s | Solve (w;,y) = SVM(A,D,c);

7 Given (wj, ), calculate ATV; as
described in equation (10);

8 | Solve (\;,7) =SVM(M,D,cs);

9 end

10 X=X

u (w*,v*) = (wi,%i);

when projected along a subset of the variables).
However, it is stated in the paper (Bezdek and
Hathaway, 2003) that it is extremely difficult to
find examples where converge occurs to a saddle
point rather than to a local minimizer.

In order to further reduce the computational
complexity of the proposed algorithm, we can
consider a simplified loss function L(.)=].|| and
R(.)=||.|3. Then formulation (7) becomes the
corresponding unconstrained convex optimization
problem:

min clle = (D(AAV)w - enls + wlls (12)

Fixing A = A, from (9) and (12), we have

cl(e — D(Aw —ey) |3 + wlf  (13)

This formulation corresponds to a least-squares
or Proximal SVM formulation (Fung and Man-
gasarian, 2001; Suykens and Vandewalle, 1999),
and its solution can be obtained by solving a sim-
ple system of linear equations. We will denote for-
mulation (13) by

(w,v) = LSSVM(A, D, c) (14)

If A= [ A o e} then the solution to (13) is

given by

(w,v) = (ATA + %I)*%Tpe (15)



ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

On the other hand, fixing (w,vy) = (w,7), we
have

miny c|le — (D(AVE/A) —ey)|3 + |03
= minyclle — (D(AWA) — e7)|3
(16)

since w is a constant. Hence,

X = (AW)T(ATW)) " (AW)T De(1—7) (17)

Furthermore,

AWMT(AW) =WTATAW  (18)
From (17) and (18),
A = (WTATAW)"YAW)T De(1 — )

= (ATAW)'(W)"'WAT De(1 — v)
= diag(+)(ATA)T'ATDe(1 - )
(19)
For some problems, ATA can be ill-
conditioned, which may lead to incorrect
values for A. In order to improve conditioning
we add a Tikhonov regularization perturbation
(Neumaier, 1998). (19) becomes

A= diag(%)(ATA—l—eI)’lATDe(l—fy) (20)
where € is a very small value.

Note that (ATA + eI)~! involves calculating
the inverse of a £ x k matrix, where k is the num-
ber of words in the word2vec dictionary. In some
cases, k can be much larger than m, the number
of training set examples. If this is the case, we
can use the Sherman-Morrison-Woodbury formula
(Golub and Van Loan, 1996):

+uv' ) T =4 —Z “u(ll+v TTu) v -
(Z T)l ZIZI(I TZI)ITZI

(21)
with Z = eI, u = v = AT. Then (ATA 4 eI)™!
becomes

= 1(I — AT(AAT +e1)7'A)

‘ (22)
which involves inverting an m X m matrix with
m << k.

The A we obtained is a vector of weights of
the words that would be used in (1) to calculate
text2vec of a given sample.

Algorithm 1 can be modified to consider formu-
lation (3) instead of (13) by making two simple
changes:

(ATA +en)™?

1. Substitute line 6 of Algorithm 1 by: Solve
equation (15) to obtain (wj,7y);

2. Substitute line 8 of Algorithm 1 by: Solve
equation (19) to obtain A;

4 Experiments

We used binary classification as the task for eval-
uating our text representation against unweighted
averaged (UAEm) (Wieting et al., 2015) and
weighted averaged text (WAEm) representations.
We computed WAEm using tf-idf weights as the
weights (De Boom et al., 2016). The main rea-
son behind the choice of representations is that
our model does not require re-training the entire
word embedding models. We used the same text-
processing pipeline for all the representations.

We implemented two versions of our Algorithm
1: SVM-based (SVM-OptEm) (Formulation 3)
and least square SVM-based (LSSVM-OptEm)
(Formulation 12).

In SVM-OptEm, we used a support vector ma-
chine (SVM) (Cortes and Vapnik, 1995) as the
classifier. We used a scikit-learn (Pedregosa et al.,
2011) implementation of SVM for the experi-
ments.

In LSSVM-OptEm, we used a least square sup-
port vector machine (LS-SVM) (Cortes and Vap-
nik, 1995) as the classifier.

4.1 Datasets

To showcase the performance of our model, we
chose fifteen different binary classification tasks
over the subsets of different datasets. Twelve pub-
lic datasets are briefly described in Table 1.

We also performed experiments on three
datasets belonging to the insurance domain.

e BI-1 and BI-2: These datasets consist of
the claim notes with binary classes based on
topic of phone conversation. These notes
were taken by call representative of the com-
pany after the phone call was completed. For
BI-1, we classified the call notes into two cat-
egories based on claim complexity: simple
and complex. For BI-2, we wanted to identify
notes that documented a failed attempt made
by the call representative to get in touch with
the customer.

e TRANSCRIPTS: These datasets consist of
the phone transcripts with two classes: pay-
by-phone calls and others. These transcripts
were generated inside the company for the
calls received at the call center. Each call
would be assigned a class based on the pur-
pose of the call.



ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Dataset Description

Positive Class

Reference

20NEWSGRP-SCI | 20 Newsgroup documents

Science-related documents | (Lang, 1995)

AMZN-EX Amazon reviews

Electronics review

(Blitzer et al., 2007)

AMZNBK-SENT | Amazon book reviews

Positive review

(McAuley et al., 2015; He and McAuley, 2016)

BBC BBC news articles Sports article (Greene and Cunningham, 2006)

BLOG-GENDER Blog articles Male Writer (Mukherjee and Liu, 2010)

DBPEDIA Wikipedia articles Artist article (DBPedia, 2018; Lehmann et al., 2015; Zhang et al., 2015)
IMDB IMDB movie reviews Positive review (Maas et al., 2011)

SCIPAP Sentences from scientific papers Owner-written sentence (Lichman, 2013)

SST Movie reviews Positive sentiment (Socher et al., 2013)

YAHOO-ANS Questions from Yahoo’s question-answer dataset | Health-related question (Zhang et al., 2015)

YELP-REST Yelp Restaurant Reviews Restaurant-related review | (Yelp, 2018)

YELP-STAR Yelp Reviews Positive review (Yelp, 2018)

Table 1: Public datasets used for experiment.

4.2 Word Embeddings

We chose to work on different word2vec-based
word embeddings. These word embeddings have
either been pre-trained models or in-house trained
models. These embeddings were used on the
datasets based on their contextual relevance.

o wikipedia (Bojanowski et al., 2016): The
skip-gram model was trained on English ar-
ticles in Wikipedia by FastText (Facebook,
2018).

e google-news (Mikolov et al., 2013b): The
model was trained on Google News Data,
and is available on the Google Code website
(Google, 2018).

e amzn: The skip-gram model was trained in-
house on amazon reviews (McAuley et al.,
2015; He and McAuley, 2016). Gensim
(Rehiiek and Sojka, 2010) was used to train
the model.

e yelp: The skip-gram model was trained in-
house on yelp reviews (Yelp, 2018). Gensim
was used to train the model.

e transcript: The continuous bag-of-words
model was trained in-house on the transcripts
generated in the of the calls from call centers.
Gensim was used to train the model over ap-
proximately 3 million transcripts.

e claim-notes: The continuous bag-of-words
model was trained in-house on the notes
taken by call representatives after the call
was completed. C-based code from Google
Word2vec website (Google, 2018) was used
to train the model over approximately 100
million notes.

We used different word2vec models to verify
that our models works well independently of the

underlying embedding representation. Moreover,
it also gives better contextual representation of
words for these datasets.

4.3 Text processing

The method of processing employed on text was
similar to the one done for training the word2vec
models. This ensured the consistency of word-
occurrence in the dataset in lieu to the model that
would be used for mapping the words.

Different word2vec models had different pro-
cessing procedures, such as substitutions based on
regular expressions, removal of non-alphabetical
words, and lowercasing the text. Accordingly,
text-processing was done for the training data.

4.4 Results

To compare performance of the algorithms tested,
we decided to use area under curve (AUC) for
evaluation. This metric was chosen in order to
remove the possibility of unbalanced datasets af-
fecting the efficacy of the accuracy of the models.
We also recorded the accuracy scores.

The performance of our models for the experi-
ments can be seen in Table 2.

Our algorithm provides better or comparable
performance against UAEm and WAEm. This
performance is achieved over multiple iterations,
as seen in Figure 2. The number of iterations re-
quired to reach the best performance for our model
varies with the dataset and training size.

Our algorithm is found to approach an “equilib-
rium” stage for the vector A, as seen in Figure 3.
In other words, with the iterations, the mean dif-
ference between the current weights and weights
from previous iteration of the words approaches
zero. This behavior is seen consistently for all the
experimental cases. This shows that our algorithm
exhibits good convergence behavior as expected.



ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Dataset Word2Vee Model Data Size Area Under Curve Accuracy
Train | Test UAEm | WAEm | SVM-OptEm | LSSVM-OptEm | UAEm | WAEm | SVM-OptEm | LSSVM-OptEm

20NEWSGRP-SCI | google-news 3000 | 2000 0.9017 | 0.8587 | 0.9242 0.9104 0.8280 | 0.8005 | 0.8555 0.8380
AMZN-EX wikipedia 10,000 | 10,000 | 0.9913 | 0.9879 | 0.9918 0.9918 0.9633 | 0.9616 | 0.9609 0.9653
AMZNBK-SENT || amzn 10,000 | 10,000 | 0.9289 | 0.9000 | 0.9374 0.9264 0.8538 | 0.8237 | 0.8702 0.8570
BBC google-news 1,850 | 500 0.9966 | 0.9826 | 0.9963 0.9960 0.9700 | 0.9300 | 0.9780 0.9700
BLOG-GENDER || wikipedia 2,000 | 1,000 | 0.7680 | 0.7413 | 0.7905 0.7545 0.7110 | 0.6950 | 0.7280 0.6980
DBPEDIA wikipedia 10,000 | 10,000 | 0.9925 | 0.9915 | 0.9936 0.9920 0.9589 | 0.9576 | 0.9656 0.9588
IMDB wikipedia 5,000 | 2,500 | 0.9155 | 0.8642 | 0.9340 0.9100 0.8439 | 0.7863 | 0.8599 0.8343
SCIPAP wikipedia 1,500 | 750 0.8617 | 0.8432 | 0.9142 0.9252 0.8000 | 0.7920 | 0.8600 0.8787
SST google-news 10,000 | 10,000 | 0.8868 | 0.8776 | 0.8923 0.8558 0.8026 | 0.8031 | 0.8070 0.8032
YAHOO-ANS wikipedia 20,000 | 10,000 | 0.9249 | 0.9195 | 0.9230 0.8987 0.8464 | 0.8467 | 0.8471 0.8222
YELP-REST yelp 40,000 | 40,000 || 0.9731 | 0.9700 | 0.9750 0.9736 0.9198 | 0.9176 | 0.9274 0.9245
YELP-STAR yelp 20,000 | 10,000 | 0.9705 | 0.9629 | 0.9727 0.9700 0.9135 | 0.9041 | 0.9165 09111
BI-1 claim-notes 1,508 | 561 0.8779 | 0.8646 | 0.8926 0.8960 0.9198 | 0.9180 | 0.9144 0.9109
BI-2 claim-notes 1,081 | 238 0.7695 | 0.7701 | 0.8115 0.7749 09118 | 0.9118 | 0.9244 0.9244
TRANSCRIPTS | transcript 5,000 | 3,000 | 0.9608 | 0.9294 | 0.9676 0.9670 0.9150 | 0.8580 | 0.9280 0.9237

Table 2: Binary text classification AUC and accuracy results for test data for SVM-based implementation
(SVM-OptEm) and least square SVM-based implementation (LSSVM-OptEm). The highest score for

each evaluation metric is in boldface.

—— OptEm AUC  --- Unweighted AUC = BI-2
a 0
DBPEDIA IMDB £ /
0.935 )
2
0.930 A 21 T ; r . .
0.992 1 z 0 10 20 30 40 50
Y Y 09251 Iteration
< < . YAHOO-ANS
0.990 1 0.920 - £ ooq
0.915 1 E"
T T T T T T g -0.5 4 [
) 20 40 0 20 40
Iteration Iteration g T T T T T T
< 0 10 20 30 40 50
0965 TRANSCRIPTS AMZNBK-SENT teration
) - AMZN-EX
0.966 o 09
=)
§ 0.964 2 /
g 11 ; \ \ ‘ \ \ \ \
0.962 1 é [ 5 10 15 20 25 30 35 40
___________________ Iteration
6 Zb 4‘0 6 2‘0 4‘0
Iteration Iteration
Figure 3: Average of Weight Difference over it-
Figure 2: AUC Scores of test data over iterations eration for 3 datasets. This difference approaches

4.5 Text Representation

One of the advantages our model holds over
UAEm and WAEm is that our model can be used
to extract the most important words in the train-
ing set. As our model reconfigures the weights of
the words at each iteration, it also indirectly reas-
signs the degree of importance to these words. We
can obtain these words by taking the absolute val-
ues of the weights assigned to these words at the
end of the iteration. This information can be used
for improving different algorithms, such as visual
representation of text and topic-discovery, and as
features for other models.

Figure 4 shows weights of top 15 words for
three of our datasets. Weights assigned to the
words are based on the role they play in helping
the classifier determine the class of any given sam-
ple.

Table 3 shows the top 10 words for three of the

Zero over iterations.

datasets. For a human eye, these words clearly
have discriminative power with respect to the
given classification task. We also found that words
that are least informative about the given task have
weights close to zero.

5 Conclusions And Future Work

Our paper provides an alternative way of sen-
tence/document representation, based on the re-
alignment of the weights of words in the text. This
approach takes labels into consideration while
generating the weights of these words. Evalua-
tion of this algorithm was compared against un-
weighted and weighted average text embedding,
and we found that our model performs better or
comparatively against them.

Our model also brings additional benefits to the
table. It provides a ranking of the relevance of the
words with respect to the text classification prob-



ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

AMZNBK-SENT

aste
disappointing
unfortunately
flat

claims
amazing
excellent
sappointment
worst
unbelievable
boring
engrossing
sadly
ridiculous
poorly

&
AG-NEWS
0.110
0.105
0.100
£0.095
=
0.090
0.085

0.080

internet
computer
web

a
slashed
google

oftwi

adaptable
situation
nasa
com
overcharging
apple
mw

e

money
gameplay
award

lot

singer
actress
star
online
referee
doping
market
election
coach
firm

Figure 4: Weights of top 15 words identified by
OptEm for three of the datasets used in our ex-
periments. The words appear to be very informa-
tive; some can be easily associated to correspond-
ing class.

AMZN-EX | YAHOO-ANS | DBPEDIA
book period born
sound profile author
product mushrooms singer
player medicare directed
use daily album
unit youngest artist
price longest writer
quality anger known
lens aerobics musician
radio confirm novelist

Table 3: 10 Words with highest absolute weights
for AMZN-EX, YAHOO-ANS, AND DBPEDIA.
Most of these words are clear indicators of their
class.

lem at hand. This ranking of words by impor-
tance can be used for different NLP applications,
such as extraction-based summarization, context-

matching, and text cleaning. By learning the opti-
mal weights of the words, our model also tends to
remove or ignore less informative words, thus per-
forming its own version of feature selection. Our
text embedding algorithm combines the compact-
ness and expressiveness of the word-embedding
representations with the human-interpretability of
a BoW-type model.

We intend to extend this work to make the pro-
posed algorithm more scalable in order to incor-
porate larger, more complex classification models
and tasks, such as multi-label and multi-class clas-
sification and summarization.

We want to explore using other normalizations
and constraints to the weight vector. One possibil-
ity is to explore 1-norm regulation for the weight
vector to make it more sparse and have a more ag-
gressive feature (word) selection. Another inter-
esting direction is toconsider group regularization
similar to Fung’s paper (2007), where the groups
of words are suggested by a graph naturally de-
fined by the distances between the words provided
by the word embedding. In this way, semantically
similar words would be weighted similarly and the
result of the algorithm would be a clustering of
terms by semantic meaning or topics that are rele-
vant to the classification problem at hand.

References

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings .

James C. Bezdek and Richard J. Hathaway. 2003.
Convergence of alternating optimization.  Neu-
ral,  Parallel Sci. Comput. 11(4):351-368.
http://dl.acm.org/citation.cfm?id=964885.964886.

John Blitzer, Mark Dredze, and Fernando Pereira.
2007. Biographies, Bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classi-
fication. In Proceedings of the Association for Com-
putational Linguistics (ACL).

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606 .

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks.  Mach. Learn. 20(3):273-297.
https://doi.org/10.1023/A:1022627411411.

DBPedia. 2018. Dbpedia. http://wiki.dbpedia.org/.

Cedric De Boom, Steven Van Canneyt, Thomas
Demeester, and Bart Dhoedt. 2016. Rep-
resentation learning for very short texts


http://dl.acm.org/citation.cfm?id=964885.964886
http://dl.acm.org/citation.cfm?id=964885.964886
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1023/A:1022627411411
http://wiki.dbpedia.org/
http://wiki.dbpedia.org/
https://doi.org/10.1016/j.patrec.2016.06.012
https://doi.org/10.1016/j.patrec.2016.06.012

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

using weighted word embedding aggrega-
tion. Pattern Recogn. Lett. 80(C):150-156.
https://doi.org/10.1016/j.patrec.2016.06.012.

Facebook. 2018. Fasttext. https://fasttext.cc/.

G. Fung and O. L. Mangasarian. 2001. Proximal
support vector machine classifiers. In F. Provost
and R. Srikant, editors, Proceedings KDD-2001:
Knowledge Discovery and Data Mining, August
26-29, 2001, San Francisco, CA. Asscociation for
Computing Machinery, New York, pages 77-86.
Ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-02.ps.

Glenn Fung and Jonathan Stoeckel. 2007. Svm fea-
ture selection for classification of spect images
of alzheimer’s disease using spatial information.
Knowledge and Information Systems 11(2):243—
258. https://doi.org/10.1007/s10115-006-0043-5.

Gene H. Golub and Charles F. Van Loan. 1996. Matrix
Computations (3rd Ed.). Johns Hopkins University
Press, Baltimore, MD, USA.

Google. 2018. Word2vec.
https://code.google.com/archive/p/word2vec/.

Derek Greene and Pddraig Cunningham. 2006. Prac-
tical solutions to the problem of diagonal dom-
inance in kernel document clustering. In Proc.
23rd International Conference on Machine learning
(ICML’06). ACM Press, pages 377-384.

Zellig Harris. 1954. Distributional structure. Word

10(23):146-162.

Ruining He and Julian McAuley. 2016. Ups
and downs:  Modeling the visual evolution
of fashion trends with one-class collabora-
tive filtering. In Proceedings of the 25th In-
ternational Conference on World Wide Web.
International World Wide Web Conferences
Steering Committee, Republic and Canton of
Geneva, Switzerland, WWW ’16, pages 507-517.
https://doi.org/10.1145/2872427.2883037.

Ken Lang. 1995. Newsweeder: Learning to filter net-
news. In Proceedings of the 12th International Ma-
chine Learning Conference. pages 331-339.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Proceed-
ings of the 31st International Conference on Inter-
national Conference on Machine Learning - Volume
32. JIMLR.org, ICML’14, pages II-1188-I1-1196.

http://dl.acm.org/citation.cfm?id=3044805.3045025.

Yuh-Jye Lee and O.L. Mangasarian. 2001.
Ssvm: A smooth support vector machine
for classification. Computational  Op-
timization and  Applications 20(1):5-22.
https://doi.org/10.1023/A:1011215321374.

Jens Lehmann, Robert Isele, Max Jakob, Anja
Jentzsch, Dimitris Kontokostas, Pablo N. Mendes,
Sebastian Hellmann, Mohamed Morsey, Patrick

van Kleef, Soren Auer, and Christian Bizer.
2015. DBpedia - a large-scale, multilingual
knowledge base extracted from wikipedia. Se-
mantic Web Journal 6(2):167-195.  http://jens-
lehmann.org/files/2015/swj_dbpedia.pdf.

Omer Levy and Yoav Goldberg. 2014. Linguistic reg-
ularities in sparse and explicit word representations.
In CoNLL.

M. Lichman. 2013. UCI machine learning repository.
http://archive.ics.uci.edu/ml.

Chu-Cheng Lin, Waleed Ammar, Chris Dyer, and
Lori S. Levin. 2015. Unsupervised POS induc-
tion with word embeddings. CoRR abs/1503.06760.
http://arxiv.org/abs/1503.06760.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Portland, Oregon, USA, pages
142-150.  http://www.aclweb.org/anthology/P11-
1015.

Julian McAuley, Christopher Targett, Qinfeng Shi,
and Anton van den Hengel. 2015. Image-
based recommendations on styles and substi-
tutes. In Proceedings of the 38th International
ACM SIGIR Conference on Research and De-
velopment in Information Retrieval. ACM, New
York, NY, USA, SIGIR °’15, pages 43-52.
https://doi.org/10.1145/2766462.2767755.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word repre-
sentations in vector space. In Proceedings of ICLR
Workshop 2013.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013b. Distributed
representations of words and phrases and their
compositionality.  In Proceedings of the 26th
International Conference on Neural Information
Processing Systems - Volume 2. Curran As-
sociates Inc., USA, NIPS’13, pages 3111-3119.
http://dl.acm.org/citation.cfm?id=2999792.2999959.

Arjun Mukherjee and Bing Liu. 2010.  Improv-
ing gender classification of blog authors. In
Proceedings of the 2010 Conference on Empir-
ical Methods in Natural Language Processing.
Association for Computational Linguistics, Strouds-
burg, PA, USA, EMNLP °’10, pages 207-217.
http://dl.acm.org/citation.cfm?id=1870658.1870679.

Arnold Neumaier. 1998. Solving ill-conditioned
and singular linear systems: A tutorial on
regularization. SIAM  Review 40(3):636-666.
https://doi.org/10.1137/S0036144597321909.


https://doi.org/10.1016/j.patrec.2016.06.012
https://doi.org/10.1016/j.patrec.2016.06.012
https://doi.org/10.1016/j.patrec.2016.06.012
https://doi.org/10.1016/j.patrec.2016.06.012
https://doi.org/10.1016/j.patrec.2016.06.012
https://doi.org/10.1016/j.patrec.2016.06.012
https://doi.org/10.1016/j.patrec.2016.06.012
https://fasttext.cc/
https://fasttext.cc/
https://doi.org/10.1007/s10115-006-0043-5
https://doi.org/10.1007/s10115-006-0043-5
https://doi.org/10.1007/s10115-006-0043-5
https://doi.org/10.1007/s10115-006-0043-5
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
http://dl.acm.org/citation.cfm?id=3044805.3045025
http://dl.acm.org/citation.cfm?id=3044805.3045025
http://dl.acm.org/citation.cfm?id=3044805.3045025
https://doi.org/10.1023/A:1011215321374
https://doi.org/10.1023/A:1011215321374
https://doi.org/10.1023/A:1011215321374
http://jens-lehmann.org/files/2015/swj_dbpedia.pdf
http://jens-lehmann.org/files/2015/swj_dbpedia.pdf
http://jens-lehmann.org/files/2015/swj_dbpedia.pdf
http://jens-lehmann.org/files/2015/swj_dbpedia.pdf
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1503.06760
http://arxiv.org/abs/1503.06760
http://arxiv.org/abs/1503.06760
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
https://doi.org/10.1145/2766462.2767755
https://doi.org/10.1145/2766462.2767755
https://doi.org/10.1145/2766462.2767755
https://doi.org/10.1145/2766462.2767755
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=1870658.1870679
http://dl.acm.org/citation.cfm?id=1870658.1870679
http://dl.acm.org/citation.cfm?id=1870658.1870679
https://doi.org/10.1137/S0036144597321909
https://doi.org/10.1137/S0036144597321909
https://doi.org/10.1137/S0036144597321909
https://doi.org/10.1137/S0036144597321909

ACL 2018 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao,
Xiaodong He, Jianshu Chen, Xinying Song, and
Rabab Ward. 2016. Deep sentence embedding using
long short-term memory networks: Analysis and ap-
plication to information retrieval. IEEE/ACM Trans.
Audio, Speech and Lang. Proc. 24(4):694-707.
http://dl.acm.org/citation.cfm?id=2992449.2992457.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research
12:2825-2830.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532—
1543. http://www.aclweb.org/anthology/D14-1162.

Radim Rehtifek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. ELRA, Valletta,
Malta, pages 45-50. http://is.muni.cz/
publication/884893/en.

scikit-learn. 2017. Support vector machines.
http://scikit-learn.org/stable/modules/svm.html.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Parsing with composi-
tional vector grammars. In EMNLP.

J. A. K. Suykens and J. Vandewalle. 1999.
Least squares support vector machine clas-
sifiers. Neural Process. Lett. 9(3):293-300.
https://doi.org/10.1023/A:1018628609742.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2015. Towards universal paraphrastic sen-
tence embeddings. CoRR abs/1511.08198.

Yelp.  2018. Yelp dataset challenge.
https://www.yelp.com/dataset/challenge.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text
classification.  In Proceedings of the 28th In-
ternational Conference on Neural Information
Processing Systems - Volume 1. MIT Press,
Cambridge, MA, USA, NIPS’15, pages 649-657.
http://dl.acm.org/citation.cfm?id=2969239.2969312.

10


http://dl.acm.org/citation.cfm?id=2992449.2992457
http://dl.acm.org/citation.cfm?id=2992449.2992457
http://dl.acm.org/citation.cfm?id=2992449.2992457
http://dl.acm.org/citation.cfm?id=2992449.2992457
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
https://doi.org/10.1023/A:1018628609742
https://doi.org/10.1023/A:1018628609742
https://doi.org/10.1023/A:1018628609742
https://www.yelp.com/dataset/challenge
https://www.yelp.com/dataset/challenge
http://dl.acm.org/citation.cfm?id=2969239.2969312
http://dl.acm.org/citation.cfm?id=2969239.2969312
http://dl.acm.org/citation.cfm?id=2969239.2969312

