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ABSTRACT

This paper presents the work submitted to the Group-level Emo-
tion Recognition sub-challenge, which is part of the 5th Emotion
Recognition in the Wild (EmotiW 2017) Challenge. The task of this
sub-challenge is to classify the emotion of a group of people in each
image as positive, neutral or negative. To address this task, a hybrid
network that incorporates global scene features, skeleton features
of the group, and local facial features is developed. Specifically,
deep convolutional neural networks (CNNs) are first trained on
the faces of the group, the whole images and the skeletons of the
group, and then fused to perform the group-level emotion predic-
tion. Experimental results show that the proposed network achieves
80.05% and 80.61% on the validation and testing sets, respectively,
outperforming the baseline of 52.97% and 53.62%.
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1 INTRODUCTION

The problem of emotion recognition for individuals has been widely
studied due to its importance in affective computing, security and
human-computer interaction [4, 19, 24]. Although the problem of
emotion recognition for a group of people has been less extensively
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studied and remains as an open research problem, it is gaining pop-
ularity due to the huge amount of data available on social network
sites, which contain images of groups of people participating in
events and social gatherings. In addition, group-level emotion recog-
nition (GER) has interesting applications in image retrieval [6], shot
selection [7], surveillance [1], event summarization [7], and event
detection [31], among others. Analysis of the emotion expressed
by a group of people is also challenging due to head and body pose
variations, face occlusions, illumination variations, varied indoor
and outdoor settings, and interactions taking place between various
number of people [21].

A pioneering work in the area of GER was proposed by Dhall et
al. [9]. They collected the AFEW database, which consists of videos
of multiple subjects with each frame labeled at both group level and
individual level with respect to seven emotion classes. Similarly, the
database HAPPEI [7] was built for overall happiness at the group
level by collecting images from social networks, such as Facebook
and Flickr. In a more recent work [10], Dhall et al. collected the
Group Affect Database (GAD), which encompasses Google and
Flickr images related to key words, which describe groups and
events. The database contains images exhibiting heterogeneous
expressions across subjects of a group.

Works in the area of GER can be classified into three categories:
bottom-up methods, top-down methods and the combination of
both. The attributes of subjects are used to infer emotion at the
group level in the bottom-up methods while the group information
is used as a prior for inference of subject level attributes in the top-
down methods. An example of bottom-up methods is the work by
Hernandez et al. [14], which refers to a system to detect happiness
of the passerby at different locations of the Massachusetts Institute
of Technology campus. The authors used the Shore Framework [18]
to detect the faces in a crowd and extracted geometric facial features.
The estimated level of happiness of the scene was calculated as the
average over the happiness level of the group members. However, an
averaging model ignores both global information, e.g., the relative
position of people in the image, and local information, e.g., the level
of occlusion of a face, and therefore it is not optimal for group
emotion. An example of a top-down method is the work of Mou et
al. [21], which extracts context features and uses k-nearest neighbor
to predict emotion. In another top-down method [7], a minimum
spanning tree is used to represent a group by having faces as the
vertices and distances between two faces as the weights of the edges.
The combination of top-down and bottom-up methods have shown
better performance than using one method alone. The winner of
the group-based emotion recognition sub-challenge in EmotiW
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Figure 1: The overall structure of the proposed hybrid network. Note that multiple models have been trained on the scene,
faces and skeletons separately, then a decision fusion is performed on all the models to learn an optimal combination. The
final network configuration consists of 7 models since the redundant models are removed after decision fusion. Details are

described in Section 2 and 3.

2016 [20] proposed a long short-term memory (LSTM) to selectively
learn the important features from both the whole image and the
facial regions.

In this paper, we also propose to incorporate both top-down and
bottom-up methods. Instead of the CENTRIST [36] scene descriptor
used by the winner of the 2016 sub-challenge [20], we propose to
fine-tune state-of-the-art deep neural architectures using the Group
Affect Database 2.0 for the GER task. The proposed scene classifiers
are computed from the whole images and efficiently exploit both
global and local attributes.

A significant amount of emotion recognition research is based
on the extraction of geometric and appearance facial features [33].
However, face information alone is not enough to succeed in the
problem of group-level emotion recognition in the wild [21]. Al-
though body features are not as widely employed as facial features,
they have proven useful to predict emotions [16, 30]. Motivated by
the success of face and body-level features in emotion recognition,
the proposed approach uses face and skeleton features, in addition
to the scene classifiers, for the GER problem. Multiple models are
trained separately based on scene, face and skeleton features. Late
decision fusion is optimized to hybridize those models. The results
exhibit an overall classification accuracy of 80.61% on the testing
set, compared to 53.62% provided by the baseline'.

The structure of this paper is as follows. Section 2 presents the
details of the proposed approach. Section 3 validates the perfor-
mance of the proposed approach on the Group Affect Database 2.0,
and compares it with the baseline. The paper concludes in Section
4 with final remarks.

I The source code is available at https://github.com/gxstudy/EmotiW2017_Group

2 THE PROPOSED METHOD

The proposed method is a hybrid network (Figure 1) that combines
predictions from deep neural network models learned on scene,
faces and skeletons.

2.1 Scene Classification

Li et al. [20] has demonstrated that an average of predicted happi-
ness intensities of all the faces in the image alone is inadequate to
predict the happiness level of the image. Therefore, holistic scene
descriptors plays an important role in the emotion prediction of a
group. The CENTRIST descriptor used in the sub-challenge baseline
method only achieves 52.97% and 53.62% classification accuracy
on the validation and test sets of the Group Affect Database 2.0,
respectively. In this paper, we demonstrate that a superior classifi-
cation accuracy can be achieved by exploiting state-of-the-art deep
models.

Deep neural network architectures, such as AlexNet [17], VGG [25],
GoogLeNet [26], Inception-v2 [27] and ResNet [13], have achieved
state-of-the-art performance on the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [5] in recent years. In this paper,
we propose to use these deep architectures as scene classifiers to
predict the overall happiness level of the group. We argue that since
these state-of-the-art neural networks are able to identify objects in
large scale (1000 classes in ImageNet), the information they learned,
such as the class label, the location and the shape of the object, is
useful to infer high level knowledge, such as people layout, activity
and the background environment, which in turn, is useful to predict
group emotion.
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Specifically, whole images are used as input to state-of-the-art
deep networks. Each architecture is modified by changing the num-
ber of neurons in the last layer to 3, indicating a ternary classifi-
cation, having as targets Negative, Neutral and Positive emotions
for the group. With the exception of the last layers, the modified
architectures are initialized with the models trained on ImageNet,
which are expected to have learned essential parameters to identify
objects. The last layer in each architecture is initialized in the same
way as in the original setup of each architecture, and trained with
a learning rate for the weight and bias terms which is set to be 10
times larger than the overall learning rate. The learning parameters
of each architecture, such as the overall learning rate, the weight
decay, and the learning policy are set the same as in the original
submissions to the ImageNet challenge.

2.2 Face Prediction

Faces and facial landmarks are first detected using the method
described in [15], then a 2D affine transformation where the left and
right eye corners of all the images are aligned to the same positions
is performed (the code for the the face detection and alignment
algorithms is developed based on [28]). The Viola-Jones [32] face
detector, which is better at detecting small faces, is also used to
detect the faces ignored by the first algorithm. False positives are
filtered out by a face model trained on CNN networks provided
by [11].

The VGG-FACE model was presented as the result of training
the 16-layer VGG architecture on a large-scale dataset containing
2.6M images of 2.6K celebrities and public figures for face recogni-
tion in [23]. As the state-of-the-art for face recognition, a modified
version of the VGG-FACE model is employed to perform emotion
recognition in this paper. The modification consists of changing
the number of neurons in the last fully-connected layer to 3. The
modified architecture is initialized with the weights of the original
VGG-FACE model, with the exception of the last fully-connected
layer, which is initialized with weights sampled from a Gaussian dis-
tribution of zero mean and variance 1 X 1074, The features learned
by the first CNN layers typically correspond to generic features,
such as contours and edges. Therefore, the weights of all the con-
volutional layers are kept the same as in the original VGG-FACE
model, while the weights of the first two fully-connected layers
are fine-tuned and the last fully-connected layer is trained from
scratch.

The modified VGG-FACE model is first fine-tuned on a combined
facial emotion dataset. The facial emotion dataset (30205 samples
in total) is a combination of the facial expression recognition 2013
(FER-2013) dataset [12] and the GENKI-4K dataset [35], with the
negative collection being the angry and sad classes from the FER-
2013 database, the neutral being the combination of neutral classes
from the FER-2013 and the GENKI-4K databases, and the positive
being the combination of the happiness class from both datasets.

The FACE model is further fine-tuned on the detected faces of
the Group Affect Database 2.0. During training, all the faces are
re-scaled to 256 x 256 pixels and have the same weight when fine-
tuning the parameters of the network. During testing, however,
the overall happiness level is a weighted sum of the prediction of
individual faces, where the weight of each face is proportional to
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Figure 2: Samples of skeleton representations. Left: origi-
nal image; Middle: skeleton representation 1 (includes faces
and bodys); Right: skeleton representation 2 (includes faces,
bodys and hands)

the face size (width X height). The motivation behind the weighted
summation is that faces closer to the camera contain more details,
and therefore, should be given more weigh than the ones away
from the camera.

2.3 Skeleton Classification

Facial landmarks have been widely used to recognize emotions
either directly as location vectors or by computing geometric dis-
tances among them [33]. Meanwhile, body features are encoded
mostly as hand-crafted features of the body regions in the im-
age [22]. To explore both the facial landmarks and body features
without losing the relative position of keypoints, we propose to
use a feature representation that is referred to as skeleton features,
and corresponds to the collection of keypoints of human face, body
and hands (Figure 2). We argue that skeleton is an effective way
to learn the overall emotions of the group by emphasizing facial
expressions, layout, pose, and the gesture of the group.

The skeleton of each image is extracted using OpenPose [2, 29,
34], which can jointly detect human body, hand and facial keypoints
(130 keypoints in total for each person) on single images, invariant
to the number of detected people in the image. The detection is not
perfect, as shown in Figure 2, as keypoints can be neglected or mis-
detected due to either occlusion or false positive texture similarities.
However, the results show a clear mouth shape, pose, gesture, and
layout of humans in the image. Two type of skeleton features, facial
and body landmarks without and with hand keypoints (which are
referred to as skeleton representations 1 and 2, respectively), are
used in this paper. The extracted images are of the same size as the
original images and only contain skeleton features of the group.
Inception-v2 and ResNet are fine-tuned on the skeleton images
to predict happiness level of the group. We followed the training
procedure described in Section 2.1. Experimental results show that
both skeleton representations 1 and 2 play an important role in
classifying overall emotions.

2.4 TFeature Fusion and Decision Fusion

A single classifier is generally unable to handle the scalability and
variability of modern pattern recognition tasks, as fusing the de-
cisions of different classifiers have demonstrated superior perfor-
mance. In this paper, we explore both decision fusion and feature
fusion on the GER task.
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Figure 3: Comparison between the classification accuracy of
the baseline and the proposed scene classifiers on the vali-
dation set of the Group Affect Database 2.0.

Since the fine-tuned VGG-FACE model and the fine-tuned VGG
scene model have exactly the same network architecture, the fc6
layers (4096 features in total) of both models are extracted and
concatenated. Support vector machines (SVMs) [3] based on ra-
dial basis function (RBF) kernels are trained on the fused feature
representation to classify the overall happiness level of the group.

A grid search is performed across the predictions” of all the
models to learn the weight of each model. Even though it is simply
an exhaustive search through a manually specified subset of the
hyper-parameter space and it’s not guaranteed to be optimal, it is
an effective and widely used way to fuse decisions. Furthermore, re-
dundant models can be identified by analyzing the resulting weight.
Models whose weight is 0 are redundant, and therefore, are removed
from the hybrid network. Figure 1 shows the overall structure of
the hybrid network after the removal of all the redundant models.

3 EXPERIMENTS

3.1 Group-Level Emotion Recognition
Sub-challenge

Group-level emotion recognition is one of the sub-challenges in
the fifth Emotion Recognition in the Wild (EmotiW 2017) Grand
Challenge [8]. The images in this sub-challenge are from the Group
Affect Database 2.0 [10], which contains 3630, 2065, 772 images in
the training, validation and testing sets, respectively. These images
are collected from social events, such as convocations, marriages,
parties, meetings, funerals, protests, etc. Participants compete on
the accuracy of classifying the group perceived emotion as Positive,
Neutral or Negative on the testing data’.

2By predictions we mean the probabilities of an image belonging to each class.
3Note that since the class distribution is unbalanced (the test data contains 311, 165,
and 296 images in the negative, neutral and positive classes, respectively), the accuracy
we compete on is the weighted sum of accuracies per class, where the weight for
each class is the number of samples in that class, we refer to as the overall accuracy.
However, the unweighted sum of accuracies per class is also provided in this paper to
clarify the confusion that readers may have when they compute the unweighted sum
of accuracies per class directly from the confusion matrices and find it different from
the overall accuracy.

Xin Guo, Luisa F. Polania, and Kenneth E. Barner

Table 1: Confusion matrix
on the validation set of the
fine-tuned Inception-v2
scene classifier, with over-
all accuracy being 69.64%
and unweighted sum of
accuracies per class being
70.14%.

Table 2: Confusion matrix
of the combined scene clas-
sifiers on the validation set,
with overall accuracy be-
ing 72.35% and unweighted
sum of accuracies per class
being 72.72%.

P
Neg Neu Pos Neg Neu o8

Neg 77.48 1454 7.98
Neu 20.47 67.71 11.81
Pos 505 21.99 7296

Neg 76.06 14.36 9.57
Neu 22.80 65.80 11.40
Pos 6.60 24.84 68.56

3.2 Scene Classification Results

AlexNet, VGG 16-layer network, GoogLeNet, Inception-v2 and
ResNet are explored as the deep learning architectures to classify
group-level emotion on the whole images. Experimental results
(Figure 3) show that deep neural networks perform significantly
better than CENTRIST for scene classification on the validation set.
The confusion matrix corresponding to the fine-tuned Inception-v2
model is shown in Table 1.

It is worth noting that the performance of these fine-tuned net-
works is consistent with the performance of their original versions
on the 1000-label classification problem of ImageNet, which sug-
gests that transfer learning from ImageNet classification is worthy
and higher accuracy on ImageNet corresponds to better initialized
parameters and network structure for the GER problem. However,
decision fusion of these models only increases the performance by
2.71% on the overall accuracy (Table 2).

There is redundancy between the different deep networks em-
ployed for scene classification. However, as discussed in Section
2.4, such redundancy is removed using the weights generated by
the decision fusion stage.

3.3 Face Prediction Results

The confusion matrix of the classification on the validation dataset
associated to the fine-tuned VGG-FACE model is shown in Table 3.
This model exhibits better performance on the positive and neg-
ative classes than on the neutral class. The reason is that, unlike
neutral-emotion and sad faces, smiley and angry faces usually come
with clear muscular indication. That is why additional information
related to the scene and to the activities performed in the image are
necessary to improve emotion recognition. For example, a group of
people with neutral faces may be either neutral as in a meeting or
sad as in a silent protest, which are difficult to distinguish without
information other than faces.

Given that the fine-tuned VGG-FACE model has high accuracy
and low false-positive rate on the positive class, two new predictors
were developed, positive-only predictor and non-positive predictor,
to use in combination with the fine-tuned VGG-FACE model. The
idea behind it is that the prediction is expected to be more reliable
if the VGG-FACE model predicts a sample as positive instead of
non-positive, since the fine-tuned VGG-FACE model is better at
predicting the positive class.
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Table 3: Confusion matrix
on the validation set of
the fine-tuned VGG-FACE
model, with overall accu-
racy being 72.78% and un-
weighted sum of accura-
cies per class being 72.85%.

Table 4: Confusion matrix
of the SVM predictions on
fused features, with over-
all accuracy being 74.00%
and unweighted sum of
accuracies per class being
74.51%.

Table 5: Confusion matrix
of the Inception-v2 Skele-
ton 1 classifier on the val-
idation set, with overall ac-
curacy being 63.20% and un-
weighted sum of accura-
cies per class being 62.98%.
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Table 6: Confusion matrix
of the ResNet-152 Skeleton
2 classifier on the valida-
tion set, with overall accu-
racy being 64.99% and un-
weighted sum of accura-
cies per class being 64.45%.

Neg Neu Pos Neg Neu Pos Neg Neu Pos Neg Neu Pos
Neg 76.24 1631 7.45 Neg 81.38 13.83 4.79 Neg 59.22 26.24 14.54 Neg 59.22 22.70 18.09
Neu 33.52 60.16 6.32 Neu 2843 66.48 5.08 Neu 18.68 70.74 10.58 Neu 2143 63.74 14.84
Pos 479 13.07 82.15 Pos 647 17.85 75.68 Pos 10.87 30.14 58.99 Pos 7.89 21.73 70.38

The confidence level is indicated by the weight assigned to the
predictions. In order to assign different weights, the positive and
non-positive predictions have to be split apart. The splitting rule is
as follows: (1) if the fine-tuned VGG-FACE model favors the positive
class, then the probability for positive class of the positive-only
predictor is 1, and the probabilities for the negative and neutral
classes are 0; while in the non-positive predictor, all the probabilities
are 0; e.g., if the prediction of the fine-tuned VGG-FACE model is
[0.15,0.05,0.8], then the positive-only prediction is [0,0,1] and
the non-positive prediction is [0, 0, 0]; (2) if the fine-tuned VGG-
FACE model favors either the negative or the neutral class, then all
the output probabilities of the positive-only predictor are set to 0;
while the output probabilities of the non-positive predictor for both
negative and neutral are set to 0.5; e.g., if the prediction of the fine-
tuned VGG-FACE model is [0.9, 0.05, 0.05], then the positive-only
prediction is [0, 0, 0] and the non-positive prediction is [0.5, 0.5, 0].
Note that the unweighted sum of the positive-only predictor and
the non-positive predictor should always sum up to 1, indicating
they are from the same prediction.

Optimal weights can be learned to combine the original fine-
tuned VGG-FACE model, the positive-only predictor and the non-
positive predictor. Note that the negative and neutral predictions
are not being separated even though the VGG-FACE model exhibits
higher accuracy on the negative class than on the neutral class.
The reason is that scene classifiers and the skeleton classifiers are
better at distinguishing the negative from the neutral class than
the VGG-FACE model, so the non-positive predictor serve as a way
to favor the non-positive classes but let the scene classifiers and
skeleton classifiers decide the exact class.

3.4 Skeleton Prediction Results

Inception-v2 and ResNet-152 network architectures are fine-tuned
with the skeleton representations. Table 5 and 6 show the confusion
matrices of the Inception-v2 trained on the Skeleton Representation
1 and of the ResNet-152 trained on the Skeleton Representation
2, respectively. Even though the overall accuracy of the skeleton
classifiers is lower than the one of the face and scene classifiers, the
skeleton classifiers show superior performance on the neutral class.
It verifies the conjunction that the face landmarks, pose, gesture and
layout of the group convey information about the overall emotion.

Table 7: Accuracies of model fusions on the validation set.

Fused Models Acc (%)
Incetion-v2 Scene classifier + VGG-FACE classifier ~ 77.29
+ Positive-only predictor 78.06
+ Non-positive predictor 78.26
+ SVM feature fusion classifier 79.52
+ Inception-v2 Skeleton 1 classifier 79.90
+ Resnet152 Skeleton 2 classifier 80.05

3.5 Results of the Feature Fusion, Decision
Fusion and Final Submission

The confusion matrix of the SVM prediction using the fused fc6
features from the fine-tuned VGG scene classifier and the fine-
tuned VGG-FACE model is shown in Table 4. The overall accuracy
is higher than the accuracy obtained when using the individual
features.

After removal of the redundant models which have weights equal
to 0 after decision fusion, the hybrid network ends up with 7 models,
as shown in Figure 1. To demonstrate the contribution of each
model, decision fusion of these 7 models is performed gradually,
with one model adding up every time, as shown in Table 7.

The challenge allows 7 submissions in total. For the first sub-
mission, we trained models on the training data only and learn the
weights of the decision fusion by favoring the highest accuracy on
the validation data, which resulted in 7 models. For the second sub-
mission, we trained these 7 models on the combination of training
and validation data (the learning parameters of the models are kept
the same as in the first submission with only an increase in the step
size and maximum number of iterations since the size of the train-
ing set becomes larger), and kept the same weights as in the first
submission. Since the models and the weights for submission 2 are
not learned from decision fusion but are inherited from submission
1, they can hardly be optimal. However, the larger size of the train-
ing data always leads to better performance, so the overall accuracy
of submission 2 increases. The rest of the submissions are subtle
adjustments of the weights only, with the aim of finding a better
local minimal each time. The accuracies of all the submissions are
shown in Table 8, with the best submission being the sixth one. The
confusion matrices for submissions 1 and 6 are shown in Table 9
and Table 10, respectively.
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Table 9: Confusion matrix
of Submission 1, with over-

all

on the testing data.

Table 8: Submission accuracies

Sub Training Data Val  Test
1 Training Set Only 80.05 78.25
2 Training + Val - 78.67
3 Training + Val - 80.06
4 Training + Val - 80.47
5 Training + Val - 79.91
6 Training + Val - 80.60
7 Training + Val - 78.81

Table 10: Confusion matrix
of Submission 6, with over-
all accuracy being 80.61%
on the testing data.

accuracy being 78.25%

Neg Neu Pos Neg Neu Pos
Neg 88.75 6.75 45 Neg 87.14 6.75 6.11
Neu 13.33 5455 32.12 Neu 848 57.58 33.94
Pos 811 24.66 67.23 Pos 237 24.66 72.97
4 CONCLUSIONS

In this paper, we propose a hybrid network that combines 7 models

for

group-level emotion recognition in the wild. To the best of

our knowledge, skeleton representations, positive-only and non-
positive predictors are presented and explored for the GER problem
for the first time in this paper. The overall accuracy of the proposed
method achieves 80.61% on the test data, which is significantly
larger than the baseline of 53.62%.

ACKNOWLEDGMENTS

The work is supported by the National Science Foundation under
Grant No. 1319598.

REFERENCES

(1]

(5]

[10]

J. Bullington. 2005. Affective computing and emotion recognition systems: the
future of biometric surveillance?. In Proceedings of the 2nd annual conference on
Information security curriculum development. ACM, 95-99.

Z. Cao, T. Simon, S. Wei, and Y. Sheikh. 2016. Realtime multi-person 2D pose
estimation using part affinity fields. arXiv preprint arXiv:1611.08050 (2016).

C. Cortes and V. Vapnik. 1995. Support-Vector Networks. Mach. Learn. 20, 3
(Sept. 1995), 273-297.

R. Cowie et al. 2001. Emotion recognition in human-computer interaction. IEEE
Signal Processing Magazine 18, 1 (2001), 32-80.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR.

A. Dhall, A. Asthana, and R. Goecke. 2010. Facial expression based automatic
album creation. In International Conference on Neural Information Processing.
Springer, 485-492.

A. Dhall, R. Goecke, and T. Gedeon. 2015. Automatic group happiness intensity
analysis. IEEE Transactions on Affective Computing 6, 1 (2015), 13-26.

A. Dhall, R. Goecke, S. Ghosh, J.i Joshi, J. Hoey, and T. Gedeon. 2017. From
Individual to Group-level Emotion Recognition: EmotiW 5.0 (ICMI 2017). ACM.

A. Dhall, R. Goecke, S. Lucey, and T. Gedeon. 2012. Collecting large, richly
annotated facial-expression databases from movies. 19, 3 (July 2012), 34-41.

A. Dhall, J. Joshi, K. Sikka, R. Goecke, and N. Sebe. 2015. The more the merrier:
Analysing the affect of a group of people in images. In IEEE International Con-
ference and Workshops on Automatic Face and Gesture Recognition, Vol. 1. IEEE,
1-8.

[12

(13]

[14]

(18

[19

[20]

[22]

[23]

[24

[26

[27

(28]
[29]

[30]

™
=

[32

[33

(34]

[35

(36]

Xin Guo, Luisa F. Polania, and Kenneth E. Barner

Y.Fan, X. Lu, D. Li, and Y. Liu. 2016. Video-based Emotion Recognition Using CNN-
RNN and C3D Hybrid Networks. In Proceedings of the 18th ACM International
Conference on Multimodal Interaction (ICMI 2016). ACM, New York, NY, USA,
445-450.

LJ. Goodfellow et al. 2013. Challenges in representation learning: A report on
three machine learning contests. In International Conference on Neural Information
Processing. Springer, 117-124.

K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image
recognition. In CVPR. 770-778.

J. Hernandez, M.E. Hoque, W. Drevo, and RW. Picard. 2012. Mood meter: counting
smiles in the wild. In Proceedings of the 2012 ACM Conference on Ubiquitous
Computing. ACM, 301-310.

V. Kazemi and J. Sullivan. 2014. One Millisecond Face Alignment with an Ensem-
ble of Regression Trees. In CVPR.

A. Kleinsmith and N. Bianchi-Berthouze. 2013. Affective body expression per-
ception and recognition: A survey. IEEE Transactions on Affective Computing 4, 1
(2013), 15-33.

A. Krizhevsky, L. Sutskever, and G.E. Hinton. 2012. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Processing
Systems. 1097-1105.

C. Kiiblbeck and A. Ernst. 2006. Face detection and tracking in video sequences
using the modified census transformation. Image and Vision Computing 24, 6
(2006), 564-572.

O. Kwon, K. Chan, J. Hao, and T. Lee. 2003. Emotion recognition by speech signals.
In Eighth European Conference on Speech Communication and Technology.

J.Li, S. Roy, J. Feng, and T. Sim. 2016. Happiness Level Prediction with Sequential
Inputs via Multiple Regressions. In Proceedings of the 18th ACM International
Conference on Multimodal Interaction (ICMI 2016). ACM, New York, NY, USA,
487-493.

W. Mou, O. Celiktutan, and H. Gunes. 2015. Group-level arousal and valence
recognition in static images: Face, body and context. In IEEE International Confer-
ence and Workshops on Automatic Face and Gesture Recognition (FG), Vol. 5. IEEE,
1-6.

W. Mou, O. Celiktutan, and H. Gunes. 2015. Group-level arousal and valence
recognition in static images: Face, body and context. In 11th IEEE International
Conference and Workshops on Automatic Face and Gesture Recognition (FG), Vol. 5.
IEEE, 1-6.

O.M. Parkhi, A. Vedaldi, A. Zisserman, et al. 2015. Deep Face Recognition.. In
BMVC, Vol. 1. 6.

B. Schuller, G. Rigoll, and M. Lang. 2003. Hidden Markov model-based speech
emotion recognition. In International Conference on Multimedia and Expo, Vol. 1.
IEEE, 1-401.

K. Simonyan and A. Zisserman. 2014. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

C. Szegedy et al. 2015. Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 1-9.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. 2016. Rethinking the
inception architecture for computer vision. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2818-2826.

H. Tal, H. Shai, P. Eran, and E. Roee. 2015. Effective Face Frontalization in
Unconstrained Images. In CVPR.

S. Tomas, J. Hanbyul, M. lain, and S. Yaser. 2017. Hand Keypoint Detection in
Single Images using Multiview Bootstrapping. In CVPR.

J. Van den Stock, R. Righart, and B. De Gelder. 2007. Body expressions influence
recognition of emotions in the face and voice. Emotion 7, 3 (2007), 487.

T. Vandal, D. McDuff, and R. El Kaliouby. 2015. Event detection: Ultra large-scale
clustering of facial expressions. In IEEE International Conference and Workshops
on Automatic Face and Gesture Recognition (FG), Vol. 1. IEEE, 1-8.

P. Viola and M. Jones. 2001. Rapid object detection using a boosted cascade of
simple features. In CVPR, Vol. 1.1, 511, I, 518 vol.1.

V. Vonikakis, Y. Yazici, V.D. Nguyen, and S. Winkler. 2016. Group Happiness
Assessment Using Geometric Features and Dataset Balancing. In Proceedings of
the 18th ACM International Conference on Multimodal Interaction (ICMI 2016).
ACM, New York, NY, USA, 479-486.

S. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. 2016. Convolutional pose
machines. In CVPR.

J. Whitehill, G. Littlewort, 1. Fasel, M. Bartlett, and J. Movellan. 2009. Toward
practical smile detection. IEEE transactions on pattern analysis and machine
intelligence 31, 11 (2009), 2106-2111.

J. Wu and J.M. Rehg. 2011. CENTRIST: A Visual Descriptor for Scene Categoriza-
tion. IEEE Trans. Pattern Anal. Mach. Intell. 33, 8 (2011), 1489-1501.



	Abstract
	1 Introduction
	2 The proposed method
	2.1 Scene Classification
	2.2 Face Prediction
	2.3 Skeleton Classification
	2.4 Feature Fusion and Decision Fusion

	3 Experiments
	3.1 Group-Level Emotion Recognition Sub-challenge
	3.2 Scene Classification Results
	3.3 Face Prediction Results
	3.4 Skeleton Prediction Results
	3.5 Results of the Feature Fusion, Decision Fusion and Final Submission

	4 Conclusions
	Acknowledgments
	References

